Theoretical modeling of electron emission from graphene

被引:57
作者
Ang, Y. S. [1 ]
Liang, Shi-Jun [1 ]
Ang, L. K. [1 ]
机构
[1] Singapore Univ Technol & Design, Singapore, Singapore
关键词
FIELD-EMISSION; THERMIONIC EMISSION; THERMAL-PROPERTIES; WORK FUNCTION; SCHOTTKY; REFLECTION; CONTACTS; FILMS;
D O I
10.1557/mrs.2017.141
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The theories of thermionic emission and field emission (also known as the Richardson-Dushman [RD] and Fowler-Nordheim [FN] Laws, respectively) were formulated more than 80 years ago for bulk materials. In single-layer graphene, electrons mimic massless Dirac fermions and follow relativistic carrier dynamics. Thus, their behavior deviates significantly from the nonrelativistic electrons that reside in traditional bulk materials with a parabolic energy-momentum dispersion relation. In this article, we assert that due to linear energy dispersion, the traditional thermionic emission and field emission models are no longer valid for graphene and two-dimensional Dirac-like materials. We have proposed models that show better agreement with experimental data and also show a smooth transition to the traditional RD and FN Laws.
引用
收藏
页码:506 / 510
页数:6
相关论文
共 72 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   Electrical contacts to two-dimensional semiconductors [J].
Allain, Adrien ;
Kang, Jiahao ;
Banerjee, Kaustav ;
Kis, Andras .
NATURE MATERIALS, 2015, 14 (12) :1195-1205
[3]   New scaling of Child-Langmuir law in the quantum regime [J].
Ang, LK ;
Kwan, TJT ;
Lau, YY .
PHYSICAL REVIEW LETTERS, 2003, 91 (20)
[4]   Current-Temperature Scaling for a Schottky Interface with Nonparabolic Energy Dispersion [J].
Ang, Y. S. ;
Ang, L. K. .
PHYSICAL REVIEW APPLIED, 2016, 6 (03)
[5]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[6]   Specular andreev Reflection in graphene [J].
Beenakker, C. W. J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (06)
[7]   Colloquium: Andreev reflection and Klein tunneling in graphene [J].
Beenakker, C. W. J. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1337-1354
[8]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[9]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[10]   The focusing of electron flow and a Veselago lens in graphene p-n junctions [J].
Cheianov, Vadim V. ;
Fal'ko, Vladimir ;
Altshuler, B. L. .
SCIENCE, 2007, 315 (5816) :1252-1255