Frequency16-tupled optical millimeter wave generation using dual cascaded MZMs and 2.5 Gbps RoF transmission

被引:33
作者
Muthu, K. Esakki [1 ]
Raja, A. Sivanantha [2 ]
Shanmugapriya, G. [1 ]
机构
[1] Univ VOC Coll Engn, Tuticorin, India
[2] Alagappa Chettiar Coll Engn & Technol, Karaikkudi, Tamil Nadu, India
来源
OPTIK | 2017年 / 140卷
关键词
Optical millimeter wave; 16-tupling; Mach-Zehnder modulator; Radio over Fiber; CHROMATIC DISPERSION; INTENSITY MODULATION; CONVERSION; SIGNAL;
D O I
10.1016/j.ijleo.2017.04.074
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical Millimeter Wave (MM-Wave) generation with the highest frequency multiplication factor is one of the most promising techniques which can eliminate the need of high frequency local oscillator at the central station. In this paper, a filterless frequency16-tupled optical MM-Wave is generated using dual stage cascaded Lithium Niobate Mach-Zehnder modulators (LN-MZM). By properly adjusting the MZM biasing parameters and phase of the RF signal, eighth order optical sidebands only are generated which can result in 16-tupled millimeter wave at the photo detector. Optical sideband suppression ratio (OSSR) of 61 dB and radio frequency spurious sideband suppression ratio (RFSSR) of 48 dB are achieved in this method. As no filtering is involved in the generation, tunability over entire MM-Wave frequency band can easily be achieved. Impact of various non-ideal parameters such as RF phase, Extinction Ratio(ER), optical input power imbalance between the arms on the optical and RF sidebands is analyzed. The transmission performance of this scheme is evaluated by modulating 2.5 Gbps data and transmitting the same over 10 km, 20 km and 25 km Radio over Fiber (RoF) links. Further, the impact of the laser linewidth on the transmission performances is also analysed and presented. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:338 / 346
页数:9
相关论文
共 21 条
[1]  
Chen H., 2013, SPIE OPT ENG, V52
[2]   A photonic frequency octo-tupler with reduced RF drive power and extended spurious sideband suppression [J].
Hasan, Mehedi ;
Hall, Trevor J. .
OPTICS AND LASER TECHNOLOGY, 2016, 81 :115-121
[3]   High extinction ratio Mach-Zehnder modulator applied to a highly stable optical signal generator [J].
Kiuchi, Hitoshi ;
Kawanishi, Tetsuya ;
Yamada, Masumi ;
Sakamoto, Takahide ;
Tsuchiya, Masahiro ;
Amagai, Jun ;
Lzutsu, Masayuki .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2007, 55 (09) :1964-1972
[4]   Dispersion Robustness of Millimeter Waves Generated by Up-Conversion Strategies [J].
Laurencio, P. ;
Vargues, H. ;
Fortes, I. ;
Avo, R. ;
Medeiros, M. C. R. .
FIBER AND INTEGRATED OPTICS, 2010, 29 (06) :441-452
[5]   An optical millimeter-wave generation scheme based on two parallel dual-parallel Mach-Zehnder modulators and polarization multiplexing [J].
Li, Xuan ;
Zhao, Shanghong ;
Zhu, Zihang ;
Gong, Bing ;
Chu, Xingchun ;
Li, Yongjun ;
Zhao, Jing ;
Liu, Yun .
JOURNAL OF MODERN OPTICS, 2015, 62 (18) :1502-1509
[6]  
Lin C. T., 2008, IEEE PHOTONIC TECH L, V20, P209
[7]   Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering [J].
Lin, Chun-Ting ;
Shih, Po-Tsung ;
Chen, Jason ;
Xue, Wen-Qiang ;
Peng, Peng-Chun ;
Chi, Sien .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2008, 20 (9-12) :1027-1029
[8]   Optical millimeter wave generated by octupling the frequency of the local oscillator [J].
Ma, Jianxin ;
Xin, Xiangjun ;
Yu, J. ;
Yu, Chongxiu ;
Wang, Kuiru ;
Huang, Huiying ;
Rao, Lan .
JOURNAL OF OPTICAL NETWORKING, 2008, 7 (10) :837-845
[9]   Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation [J].
Ma, Jianxin ;
Yu, J. ;
Yu, Chongxiu ;
Xin, Xiangjun ;
Zeng, Junying ;
Chen, L. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2007, 25 (11) :3244-3256
[10]   Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a dual-pump configuration [J].
Ma, Jianxin ;
Yu, Jianjun ;
Yu, Chongxiu ;
Ra, Zhensheng ;
Sang, Xinzhu ;
Zhou, Zhen ;
Wang, Ting ;
Chang, Gee Kung .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (07) :2851-2858