Enhancing load, wind and solar generation for day-ahead forecasting of electricity prices

被引:47
作者
Maciejowska, Katarzyna [1 ]
Nitka, Weronika [1 ]
Weron, Tomasz [2 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Comp Sci & Management, Dept Operat Res & Business Intelligence, PL-50370 Wroclaw, Poland
[2] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, PL-50370 Wroclaw, Poland
关键词
Renewables; Electricity prices; Day-ahead market; Intraday market; Forecasting; CALIBRATION WINDOWS; SELECTION;
D O I
10.1016/j.eneco.2021.105273
中图分类号
F [经济];
学科分类号
02 ;
摘要
In recent years, a rapid development of renewable energy sources (RES) has been observed across the world. Intermittent energy sources, which depend strongly on weather conditions, induce additional uncertainty to the system and impact the level and variability of electricity prices. Predictions of RES, together with the level of demand, have been recognized as one of the most important determinants of future electricity prices. In this research, it is shown that forecasts of these fundamental variables, which are published by Transmission System Operators (TSO), are biased and could be improved with simple regression models. Enhanced predictions are next used for forecasting of spot and intraday prices in Germany. The results indicate that improving the forecasts of fundamentals leads to more accurate predictions of both, the spot and the intraday prices. Finally, it is demonstrated that utilization of enhanced forecasts is helpful in a day-ahead choice of a market (spot or intraday), and results in a substantial increase of revenues. (c) 2021 Published by Elsevier B.V.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Day-Ahead Electricity Price Forecasting Based on Hybrid Regression Model
    Alkawaz, Ali Najem
    Abdellatif, Abdallah
    Kanesan, Jeevan
    Khairuddin, Anis Salwa Mohd
    Gheni, Hassan Muwafaq
    IEEE ACCESS, 2022, 10 : 108021 - 108033
  • [32] Forecasting Day-ahead Electricity Price Using a Hybrid Improved Approach
    Hu, Jian-Ming
    Wang, Jian-Zhou
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2017, 12 (06) : 2166 - 2176
  • [33] Neural Network Approaches to Electricity Price Forecasting in Day-Ahead Markets
    Rosato, Antonello
    Altilio, Rosa
    Araneo, Rodolfo
    Panella, Massimo
    2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2018 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2018,
  • [34] On the importance of the long-term seasonal component in day-ahead electricity price forecasting
    Nowotarski, Jakub
    Weron, Rafal
    ENERGY ECONOMICS, 2016, 57 : 228 - 235
  • [35] Statistical modelling of electricity prices in Day-Ahead markets and impact on Storage Revenues
    Loukatou, Angeliki
    Moreira, Roberto
    2022 17TH INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS (PMAPS), 2022,
  • [36] A neural network approach to day-ahead deregulated electricity market prices classification
    Anbazhagan, S.
    Kumarappan, N.
    ELECTRIC POWER SYSTEMS RESEARCH, 2012, 86 : 140 - 150
  • [37] Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks
    Keles, Dogan
    Scelle, Jonathan
    Paraschiv, Florentina
    Fichtner, Wolf
    APPLIED ENERGY, 2016, 162 : 218 - 230
  • [38] A Probabilistic Approach to Committing Solar Energy in Day-ahead Electricity Markets
    Bashir, Noman
    Irwin, David
    Shenoy, Prashant
    SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2021, 29
  • [39] A Deep Learning Based Hybrid Framework for Day-Ahead Electricity Price Forecasting
    Zhang, Rongquan
    Li, Gangqiang
    Ma, Zhengwei
    IEEE ACCESS, 2020, 8 : 143423 - 143436
  • [40] Explanatory Information Analysis for Day-Ahead Price Forecasting in the Iberian Electricity Market
    Monteiro, Claudio
    Fernandez-Jimenez, L. Alfredo
    Ramirez-Rosado, Ignacio J.
    ENERGIES, 2015, 8 (09) : 10464 - 10486