Image Analysis of the Mitochondrial Network Morphology With Applications in Cancer Research

被引:20
作者
Chu, Ching-Hsiang [1 ]
Tseng, Wen-Wei [1 ]
Hsu, Chan-Min [1 ]
Wei, An-Chi [1 ]
机构
[1] Natl Taiwan Univ, Grad Inst Biomed Elect & Bioinformat, Taipei, Taiwan
关键词
cancer; mitochondrial dynamics; confocal microscopic images; bioimage analysis; machine learning; mitochondrial morphology; QUANTITATIVE-ANALYSIS; DYNAMICS; MICROSCOPY; DEEP; CLASSIFICATION; FLUCTUATIONS; METABOLISM; MITOFUSINS; FUSION; DRP1;
D O I
10.3389/fphy.2022.855775
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Mitochondria are dynamic organelles that integrate bioenergetics, biosynthesis, and signaling in cells and regulate redox homeostasis, apoptotic pathways, and cell proliferation and differentiation. Depending on the environmental conditions, the mitochondrial morphology dynamically changes to match the energy demands. The mitochondrial dynamics is related to the initiation, migration, and invasion of diverse human cancers and thus affects cancer metastasis, metabolism, drug resistance, and cancer stem cell survival. We reviewed the current image-based analytical tools and machine-learning techniques for phenotyping mitochondrial morphology in different cancer cell lines from confocal microscopy images. We listed and applied pipelines and packages available in ImageJ/Fiji, CellProfiler, MATLAB, Java, and Python for the analysis of fluorescently labeled mitochondria in microscopy images and compared their performance, usability and applications. Furthermore, we discussed the potential of automatic mitochondrial segmentation, classification and prediction of mitochondrial abnormalities using machine learning techniques. Quantification of the mitochondrial morphology provides potential indicators for identifying metabolic changes and drug responses in cancer cells.
引用
收藏
页数:16
相关论文
共 88 条
[61]  
Rees Daniel J, 2020, Curr Protoc Neurosci, V94, pe105, DOI 10.1002/cpns.105
[62]   Multi-Parametric Analysis and Modeling of Relationships between Mitochondrial Morphology and Apoptosis [J].
Reis, Yara ;
Bernardo-Faura, Marti ;
Richter, Daniela ;
Wolf, Thomas ;
Brors, Benedikt ;
Hamacher-Brady, Anne ;
Eils, Roland ;
Brady, Nathan R. .
PLOS ONE, 2012, 7 (01)
[63]   Mito Hacker: a set of tools to enable high-throughput analysis of mitochondrial network morphology [J].
Rohani, Ali ;
Kashatus, Jennifer A. ;
Sessions, Dane T. ;
Sharmin, Salma ;
Kashatus, David F. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[64]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[65]   The Mitochondrion as an Emerging Therapeutic Target in Cancer [J].
Roth, Katherine G. ;
Mambetsariev, Isa ;
Kulkarni, Prakash ;
Salgia, Ravi .
TRENDS IN MOLECULAR MEDICINE, 2020, 26 (01) :119-134
[66]   ImageJ2: ImageJ for the next generation of scientific image data [J].
Rueden, Curtis T. ;
Schindelin, Johannes ;
Hiner, Mark C. ;
DeZonia, Barry E. ;
Walter, Alison E. ;
Arena, Ellen T. ;
Eliceiri, Kevin W. .
BMC BIOINFORMATICS, 2017, 18
[67]   Fluorescent Probes for Nanoscopic Imaging of Mitochondria [J].
Samanta, Soham ;
He, Ying ;
Sharma, Amit ;
Kim, Jiseon ;
Pan, Wenhui ;
Yang, Zhigang ;
Li, Jia ;
Yan, Wei ;
Liu, Liwei ;
Qu, Junle ;
Kim, Jong Seung .
CHEM, 2019, 5 (07) :1697-1726
[68]  
Schindelin J, 2012, NAT METHODS, V9, P676, DOI [10.1038/NMETH.2019, 10.1038/nmeth.2019]
[69]   NIH Image to ImageJ: 25 years of image analysis [J].
Schneider, Caroline A. ;
Rasband, Wayne S. ;
Eliceiri, Kevin W. .
NATURE METHODS, 2012, 9 (07) :671-675
[70]   Mitochondrial fragmentation and network architecture in degenerative diseases [J].
Shah, Syed, I ;
Paine, Johanna G. ;
Perez, Carlos ;
Ullah, Ghanim .
PLOS ONE, 2019, 14 (09)