Image Analysis of the Mitochondrial Network Morphology With Applications in Cancer Research

被引:20
作者
Chu, Ching-Hsiang [1 ]
Tseng, Wen-Wei [1 ]
Hsu, Chan-Min [1 ]
Wei, An-Chi [1 ]
机构
[1] Natl Taiwan Univ, Grad Inst Biomed Elect & Bioinformat, Taipei, Taiwan
关键词
cancer; mitochondrial dynamics; confocal microscopic images; bioimage analysis; machine learning; mitochondrial morphology; QUANTITATIVE-ANALYSIS; DYNAMICS; MICROSCOPY; DEEP; CLASSIFICATION; FLUCTUATIONS; METABOLISM; MITOFUSINS; FUSION; DRP1;
D O I
10.3389/fphy.2022.855775
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Mitochondria are dynamic organelles that integrate bioenergetics, biosynthesis, and signaling in cells and regulate redox homeostasis, apoptotic pathways, and cell proliferation and differentiation. Depending on the environmental conditions, the mitochondrial morphology dynamically changes to match the energy demands. The mitochondrial dynamics is related to the initiation, migration, and invasion of diverse human cancers and thus affects cancer metastasis, metabolism, drug resistance, and cancer stem cell survival. We reviewed the current image-based analytical tools and machine-learning techniques for phenotyping mitochondrial morphology in different cancer cell lines from confocal microscopy images. We listed and applied pipelines and packages available in ImageJ/Fiji, CellProfiler, MATLAB, Java, and Python for the analysis of fluorescently labeled mitochondria in microscopy images and compared their performance, usability and applications. Furthermore, we discussed the potential of automatic mitochondrial segmentation, classification and prediction of mitochondrial abnormalities using machine learning techniques. Quantification of the mitochondrial morphology provides potential indicators for identifying metabolic changes and drug responses in cancer cells.
引用
收藏
页数:16
相关论文
共 88 条
[11]   A pipeline for multidimensional confocal analysis of mitochondrial morphology, function, and dynamics in pancreatic β-cells [J].
Chaudhry, Ahsen ;
Shi, Rocky ;
Luciani, Dan S. .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2020, 318 (02) :E87-E101
[12]   Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development [J].
Chen, HC ;
Detmer, SA ;
Ewald, AJ ;
Griffin, EE ;
Fraser, SE ;
Chan, DC .
JOURNAL OF CELL BIOLOGY, 2003, 160 (02) :189-200
[13]   Mitochondrial Dynamics in Regulating the Unique Phenotypes of Cancer and Stem Cells [J].
Chen, Hsiuchen ;
Chan, David C. .
CELL METABOLISM, 2017, 26 (01) :39-48
[14]   Network analysis of Arabidopsis mitochondrial dynamics reveals a resolved tradeoff between physical distribution and social connectivity [J].
Chustecki, Joanna M. ;
Gibbs, Daniel J. ;
Bassel, George W. ;
Johnston, Iain G. .
CELL SYSTEMS, 2021, 12 (05) :419-+
[15]   Machine learning algorithms reveal the secrets of mitochondrial dynamics [J].
Collier, Jack J. ;
Taylor, Robert W. .
EMBO MOLECULAR MEDICINE, 2021, 13 (06)
[16]   Cytometric Assessment of Mitochondria Using Fluorescent Probes [J].
Cottet-Rousselle, Cecile ;
Ronot, Xavier ;
Leverve, Xavier ;
Mayol, Jean-Francois .
CYTOMETRY PART A, 2011, 79A (06) :405-425
[17]   SRRF: Universal live-cell super-resolution microscopy [J].
Culley, Sian ;
Tosheva, Kalina L. ;
Pereira, Pedro Matos ;
Henriques, Ricardo .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2018, 101 :74-79
[18]   Connecting Variability in Global Transcription Rate to Mitochondrial Variability [J].
das Neves, Ricardo Pires ;
Jones, Nick S. ;
Andreu, Lorena ;
Gupta, Rajeev ;
Enver, Tariq ;
Iborra, Francisco J. .
PLOS BIOLOGY, 2010, 8 (12)
[19]   LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching [J].
Fadero, Tanner C. ;
Gerbich, Therese M. ;
Rana, Kishan ;
Suzuki, Aussie ;
DiSalvo, Matthew ;
Schaefer, Kristina N. ;
Heppert, Jennifer K. ;
Boothby, Thomas C. ;
Goldstein, Bob ;
Peifer, Mark ;
Allbritton, Nancy L. ;
Gladfelter, Amy S. ;
Maddox, Amy S. ;
Maddox, Paul S. .
JOURNAL OF CELL BIOLOGY, 2018, 217 (05) :1869-1882
[20]   U-Net: deep learning for cell counting, detection, and morphometry [J].
Falk, Thorsten ;
Mai, Dominic ;
Bensch, Robert ;
Cicek, Oezguen ;
Abdulkadir, Ahmed ;
Marrakchi, Yassine ;
Boehm, Anton ;
Deubner, Jan ;
Jaeckel, Zoe ;
Seiwald, Katharina ;
Dovzhenko, Alexander ;
Tietz, Olaf ;
Dal Bosco, Cristina ;
Walsh, Sean ;
Saltukoglu, Deniz ;
Tay, Tuan Leng ;
Prinz, Marco ;
Palme, Klaus ;
Simons, Matias ;
Diester, Ilka ;
Brox, Thomas ;
Ronneberger, Olaf .
NATURE METHODS, 2019, 16 (01) :67-+