Image Analysis of the Mitochondrial Network Morphology With Applications in Cancer Research

被引:20
作者
Chu, Ching-Hsiang [1 ]
Tseng, Wen-Wei [1 ]
Hsu, Chan-Min [1 ]
Wei, An-Chi [1 ]
机构
[1] Natl Taiwan Univ, Grad Inst Biomed Elect & Bioinformat, Taipei, Taiwan
关键词
cancer; mitochondrial dynamics; confocal microscopic images; bioimage analysis; machine learning; mitochondrial morphology; QUANTITATIVE-ANALYSIS; DYNAMICS; MICROSCOPY; DEEP; CLASSIFICATION; FLUCTUATIONS; METABOLISM; MITOFUSINS; FUSION; DRP1;
D O I
10.3389/fphy.2022.855775
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Mitochondria are dynamic organelles that integrate bioenergetics, biosynthesis, and signaling in cells and regulate redox homeostasis, apoptotic pathways, and cell proliferation and differentiation. Depending on the environmental conditions, the mitochondrial morphology dynamically changes to match the energy demands. The mitochondrial dynamics is related to the initiation, migration, and invasion of diverse human cancers and thus affects cancer metastasis, metabolism, drug resistance, and cancer stem cell survival. We reviewed the current image-based analytical tools and machine-learning techniques for phenotyping mitochondrial morphology in different cancer cell lines from confocal microscopy images. We listed and applied pipelines and packages available in ImageJ/Fiji, CellProfiler, MATLAB, Java, and Python for the analysis of fluorescently labeled mitochondria in microscopy images and compared their performance, usability and applications. Furthermore, we discussed the potential of automatic mitochondrial segmentation, classification and prediction of mitochondrial abnormalities using machine learning techniques. Quantification of the mitochondrial morphology provides potential indicators for identifying metabolic changes and drug responses in cancer cells.
引用
收藏
页数:16
相关论文
共 88 条
[1]   Posttranslational modifications of mitochondrial fission and fusion proteins in cardiac physiology and pathophysiology [J].
Adaniya, Stephanie M. ;
O-Uchi, Jin ;
Cypress, Michael W. ;
Kusakari, Yoichiro ;
Jhun, Bong Sook .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2019, 316 (05) :C583-C604
[2]   Dominant optic atrophy, OPA1, and mitochondrial quality control: understanding mitochondrial network dynamics [J].
Alavi, Marcel V. ;
Fuhrmann, Nico .
MOLECULAR NEURODEGENERATION, 2013, 8
[3]   MitoWave: Spatiotemporal analysis of mitochondrial membrane potential fluctuations during I/R [J].
Ashok, Deepthi ;
O'Rourke, Brian .
BIOPHYSICAL JOURNAL, 2021, 120 (16) :3261-3271
[4]   Oxidative Phosphorylation as an Emerging Target in Cancer Therapy [J].
Ashton, Thomas M. ;
McKenna, W. Gillies ;
Kunz-Schughart, Leoni A. ;
Higgins, Geoff S. .
CLINICAL CANCER RESEARCH, 2018, 24 (11) :2482-2490
[5]   ON THE CIRCLE POLYNOMIALS OF ZERNIKE AND RELATED ORTHOGONAL SETS [J].
BHATIA, AB ;
WOLF, E .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1954, 50 (01) :40-48
[6]   Mitochondrial dysfunction in cancer [J].
Boland, Michelle L. ;
Chourasia, Aparajita H. ;
Macleod, Kay F. .
FRONTIERS IN ONCOLOGY, 2013, 3
[7]   CellProfiler: image analysis software for identifying and quantifying cell phenotypes [J].
Carpenter, Anne E. ;
Jones, Thouis Ray ;
Lamprecht, Michael R. ;
Clarke, Colin ;
Kang, In Han ;
Friman, Ola ;
Guertin, David A. ;
Chang, Joo Han ;
Lindquist, Robert A. ;
Moffat, Jason ;
Golland, Polina ;
Sabatini, David M. .
GENOME BIOLOGY, 2006, 7 (10)
[8]   Characterizing robustness and sensitivity of convolutional neural networks for quantitative analysis of mitochondrial morphology [J].
Chai, Xiaoqi ;
Ba, Qinle ;
Yang, Ge .
QUANTITATIVE BIOLOGY, 2018, 6 (04) :344-358
[9]   Mitochondrial Dynamics and Its Involvement in Disease [J].
Chan, David C. .
ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 15, 2020, 2020, 15 :235-259
[10]  
Chan-Min Hsu, 2021, Proceedings of SPIE, V11792, DOI 10.1117/12.2591089