MULTI-SCALE BACKGROUND SUPPRESSION ANOMALY DETECTION IN SURVEILLANCE VIDEOS

被引:2
作者
Zhen, Yang [1 ,2 ]
Guo, Yuanfang [1 ,2 ]
Wei, Jinjie [2 ]
Bao, Xiuguo [3 ]
Huang, Di [1 ,2 ]
机构
[1] Beihang Univ, State Key Lab Software Dev Environm, Beijing, Peoples R China
[2] Beihang Univ, Sch Comp Sci & Engn, Beijing, Peoples R China
[3] Coordinat Ctr China, Natl Comp Network Emergency Response Thchn Team, Beijing, Peoples R China
来源
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2021年
基金
中国国家自然科学基金;
关键词
Video anomaly detection; video analysis; weakly supervised learning;
D O I
10.1109/ICIP42928.2021.9506580
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video anomaly detection has been widely applied in various surveillance systems for public security. However, the existing weakly supervised video anomaly detection methods tend to ignore the interference of the background frames and possess limited ability to extract effective temporal information among the video snippets. In this paper, a multi-scale background suppression based anomaly detection (MS-BSAD) method is proposed to suppress the interference of the background frames. We propose a multi-scale temporal convolution module to effectively extract more temporal information among the video snippets for the anomaly events with different durations. A modified hinge loss is constructed in the suppression branch to help our model to better differentiate the abnormal samples from the confusing samples. Experiments on UCF Crime demonstrate the superiority of our MS-BSAD method in the video anomaly detection task.
引用
收藏
页码:1114 / 1118
页数:5
相关论文
共 20 条
  • [1] Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
    Carreira, Joao
    Zisserman, Andrew
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 4724 - 4733
  • [2] Learning Spatiotemporal Features with 3D Convolutional Networks
    Du Tran
    Bourdev, Lubomir
    Fergus, Rob
    Torresani, Lorenzo
    Paluri, Manohar
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4489 - 4497
  • [3] Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
    Gong, Dong
    Liu, Lingqiao
    Le, Vuong
    Saha, Budhaditya
    Mansour, Moussa Reda
    Venkatesh, Svetha
    van den Hengel, Anton
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1705 - 1714
  • [4] Learning Temporal Regularity in Video Sequences
    Hasan, Mahmudul
    Choi, Jonghyun
    Neumann, Jan
    Roy-Chowdhury, Amit K.
    Davis, Larry S.
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 733 - 742
  • [5] Hyunjong Park, 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Proceedings, P14360, DOI 10.1109/CVPR42600.2020.01438
  • [6] Jaechul Kim, 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), P2921, DOI 10.1109/CVPRW.2009.5206569
  • [7] Kingma DP, 2015, C TRACK P
  • [8] Lee P., 2020, ARXIV200607006
  • [9] Lee P, 2020, AAAI CONF ARTIF INTE, V34, P11320
  • [10] Exploring Background-bias for Anomaly Detection in Surveillance Videos
    Liu, Kun
    Ma, Huadong
    [J]. PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 1490 - 1499