A proof of the Cp′-regularity conjecture in the plane

被引:30
作者
Araujo, Damido J. [1 ]
Teixeira, Eduardo V. [2 ]
Urbano, Jose Miguel [3 ]
机构
[1] Univ Fed Paraiba, Dept Math, BR-58051900 Joao Pessoa, Paraiba, Brazil
[2] Univ Cent Florida, Dept Math, Orlando, FL 32828 USA
[3] Univ Coimbra, Dept Math, CMUC, P-3001501 Coimbra, Portugal
基金
巴西圣保罗研究基金会;
关键词
Nonlinear pdes; Regularity theory; Sharp estimates; SHARP REGULARITY; EQUATIONS;
D O I
10.1016/j.aim.2017.06.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a new oscillation estimate for solutions of nonlinear partial differential equations of elliptic, degenerate type. This new tool yields a precise control on the growth rate of solutions near their set of critical points, where ellipticity degenerates. As a consequence, we are able to prove the planar counterpart of the longstanding conjecture that solutions of the degenerate p-Poisson equation with a bounded source are locally of class C-p' = C-1'1/p-1 this regularity is optimal. Published by Elsevier Inc.
引用
收藏
页码:541 / 553
页数:13
相关论文
共 24 条
[21]   Universal Moduli of Continuity for Solutions to Fully Nonlinear Elliptic Equations [J].
Teixeira, Eduardo V. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 211 (03) :911-927
[22]   Sharp regularity for general Poisson equations with borderline sources [J].
Teixeira, Eduardo V. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (02) :150-164
[23]   REGULARITY FOR A MORE GENERAL-CLASS OF QUASILINEAR ELLIPTIC-EQUATIONS [J].
TOLKSDORF, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 51 (01) :126-150
[24]  
Uralceva N.N., 1968, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), V7, P184