Changes in enzyme activities and microbial biomass after "in situ" remediation of a heavy metal-contaminated soil

被引:169
|
作者
de Mora, AP [1 ]
Ortega-Calvo, JJ [1 ]
Cabrera, F [1 ]
Madejón, E [1 ]
机构
[1] CSIC, Inst Recursos Nat & Agrobiol, E-41080 Seville, Spain
关键词
amendments; soil quality; heavy metals; stabilization techniques; microbiological properties;
D O I
10.1016/j.apsoil.2004.07.006
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Microbial properties such as microbial biomass carbon (MBC), arylsulfatase, P-glucosidase and dehydrogenase activities, and microbial heterotrophic potential, together with several chemical properties such as pH, CaCl2 soluble heavy metal concentrations, total organic carbon and hydrosoluble carbon were measured to evaluate changes in soil quality, after "in situ" remediation of a heavy metal-contaminated soil from the Aznalcollar mine accident (Southern Spain, 1998). The experiment was carried out using containers, filled with soil from the affected area. Four organic amendments (a municipal waste compost, a biosolid compost, a leonardite and a litter) and an inorganic amendment (sugarbeet lime) were mixed with the top soil at the rate of 100 Mg ha(-1). Unamended soil was used as control. Agrostis stolonifera L. was sown in the containers. The soil was sampled twice: one month and six months after amendment application. In general, these amendments improved the soil chemical properties: soil pH, total organic carbon and hydrosoluble carbon increased in the amended soils, while soluble heavy metal concentrations diminished. At the same time, higher MBC, enzyme activities and maximum rate of glucose mineralization values were found in the organically amended soils. Plant cover was also important in restoring the soil chemical and microbial properties in all the soils, but mainly in those that were not amended organically. As a rule, remediation measures improved soil quality in the contaminated soils.
引用
收藏
页码:125 / 137
页数:13
相关论文
共 50 条
  • [1] Remediation of a heavy metal-contaminated soil by means of agglomeration
    Polettini, A
    Pomi, R
    Valente, M
    JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING, 2004, 39 (04): : 999 - 1010
  • [2] Remediation of heavy metal-contaminated estuarine sediments by strengthening microbial in-situ mineralization
    Shi, Junyi
    Wu, Xing
    Zhao, Xiaoming
    Zhou, Jiaxing
    Liu, Sijia
    Li, Binbin
    Zhang, Jiaxi
    Li, Weiming
    Zeng, Xiangfeng
    Wang, Xin
    Wang, Shaofeng
    Jia, Yongfeng
    APPLIED GEOCHEMISTRY, 2024, 169
  • [3] Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization
    Zhai, Xiuqing
    Li, Zhongwu
    Huang, Bin
    Luo, Ninglin
    Huang, Mei
    Zhang, Qiu
    Zeng, Guangming
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 635 : 92 - 99
  • [4] Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation
    Sun, Yuebing
    Zhao, Dan
    Xu, Yingming
    Wang, Lin
    Liang, Xuefeng
    Shen, Yue
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2016, 10 (01) : 85 - 92
  • [5] Remediation of Heavy Metal-Contaminated Soils with Soil Washing: A Review
    Zheng, Xiao-Jun
    Li, Qi
    Peng, Hao
    Zhang, Jian-Xiong
    Chen, Wei-Jiang
    Zhou, Bu-Chan
    Chen, Ming
    SUSTAINABILITY, 2022, 14 (20)
  • [6] Extraction, recovery, and biostability of EDTA for remediation of heavy metal-contaminated soil
    Hong, PKA
    Li, C
    Banerji, SK
    Regmi, T
    JOURNAL OF SOIL CONTAMINATION, 1999, 8 (01): : 81 - 103
  • [7] Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation
    Yuebing Sun
    Dan Zhao
    Yingming Xu
    Lin Wang
    Xuefeng Liang
    Yue Shen
    Frontiers of Environmental Science & Engineering, 2016, 10 : 85 - 92
  • [8] Electrokinetic remediation of metal-contaminated field soil
    Reddy, KR
    Ala, PR
    SEPARATION SCIENCE AND TECHNOLOGY, 2005, 40 (08) : 1701 - 1720
  • [9] EVALUATION OF SORBENT AMENDMENTS FOR IN SITU REMEDIATION OF METAL-CONTAMINATED SEDIMENTS
    Kwon, Seokjoon
    Thomas, Jeff
    Reed, Brian E.
    Levine, Laura
    Magar, Victor S.
    Farrar, Daniel
    Bridges, Todd S.
    Ghosh, Upal
    ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2010, 29 (09) : 1883 - 1892
  • [10] Particle morphology and mineral structure of heavy metal-contaminated kaolin soil before and after electrokinetic remediation
    Roach, Nicole
    Reddy, Krishna R.
    Al-Hamdan, Ashraf Z.
    JOURNAL OF HAZARDOUS MATERIALS, 2009, 165 (1-3) : 548 - 557