Decomposition in hidden Markov models for activity recognition

被引:0
|
作者
Zhang, Weidong [1 ]
Chen, Feng [1 ]
Xu, Wenli [1 ]
Cao, Zisheng [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
来源
MULTIMEDIA CONTENT ANALYSIS AND MINING, PROCEEDINGS | 2007年 / 4577卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dynamic probabilistic networks have been widely used in activity recognition. However, few models are competent for long-term complex activities involving multi-person interactions. Based on the study of activity characteristics, this paper proposes a decomposed hidden Markov model (DHMM) to capture the structures of activity both in time and space. The model combines spatial decomposition and hierarchical abstraction to reduce the complexity of state space as well as the number of parameters greatly, with consequent computational benefits in efficiency and accuracy. Experiments on two-person interactions and individual activities demonstrate that DHMMs are more powerful than Coupled HMMs and Hierarchical HMMs.
引用
收藏
页码:232 / +
页数:3
相关论文
共 50 条
  • [41] Coupled hidden Markov models for complex action recognition
    Brand, M
    Oliver, N
    Pentland, A
    1997 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, 1997, : 994 - 999
  • [42] Hidden Markov Models with Graph Densities for Action Recognition
    Glodek, Michael
    Trentin, Edmondo
    Schwenker, Friedhelm
    Palm, Guenther
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [43] Automatic keyword recognition using Hidden Markov models
    Kuo, Shyh-Shiaw
    Agazzi, Oscar E.
    Journal of Visual Communication and Image Representation, 1994, 5 (03) : 265 - 272
  • [44] Modeling and recognition of cursive words with hidden Markov models
    Cho, WY
    Lee, SW
    Kim, JH
    PATTERN RECOGNITION, 1995, 28 (12) : 1941 - 1953
  • [45] Group Sparse Hidden Markov Models for Speech Recognition
    Chien, Jen-Tzung
    Chiang, Cheng-Chun
    13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3, 2012, : 2645 - 2648
  • [46] Place learning and recognition using hidden Markov models
    Aycard, O
    Charpillet, F
    Fohr, D
    Mari, JF
    IROS '97 - PROCEEDINGS OF THE 1997 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOT AND SYSTEMS: INNOVATIVE ROBOTICS FOR REAL-WORLD APPLICATIONS, VOLS 1-3, 1996, : 1741 - 1746
  • [47] Activity Recognition for Incomplete Spinal Cord Injury Subjects Using Hidden Markov Models
    Sok, Pichleap
    Xiao, Ting
    Azeze, Yohannes
    Jayaraman, Arun
    Albert, Mark, V
    IEEE SENSORS JOURNAL, 2018, 18 (15) : 6369 - 6374
  • [48] Appliance and State Recognition using Hidden Markov Models
    Ridi, Antonio
    Gisler, Christophe
    Hennebert, Jean
    2014 INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2014, : 270 - 276
  • [49] Face recognition using hidden Markov eigenface models\
    Nankaku, Yoshihiko
    Tokuda, Keiichi
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PTS 1-3, 2007, : 469 - +
  • [50] Using Hidden Markov Models and wavelets for face recognition
    Bicego, M
    Castellani, U
    Murino, V
    12TH INTERNATIONAL CONFERENCE ON IMAGE ANALYSIS AND PROCESSING, PROCEEDINGS, 2003, : 52 - 56