Application of homotopy analysis method to fractional KdV-Burgers-Kuramoto equation

被引:140
作者
Song, Lina [1 ]
Zhang, Hongqing [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
关键词
homotopy analysis method; factional KdV-Burgers-Kuramoto equation; fractional calculus;
D O I
10.1016/j.physleta.2007.02.083
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the Letter, homotopy analysis method that developed for integer-order differential equation is directly extended to derive explicit and numerical solutions of nonlinear fractional differential equation for the first time. The fractional derivatives are described in the Caputo sense. To our knowledge, the Letter represents the first available numerical solutions of the fractional KdV-Burgers-Kuramoto equation. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 94
页数:7
相关论文
共 34 条
[1]   The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation [J].
Abbasbandy, S. .
PHYSICS LETTERS A, 2007, 361 (06) :478-483
[2]   The application of homotopy analysis method to nonlinear equations arising in heat transfer [J].
Abbasbandy, S. .
PHYSICS LETTERS A, 2006, 360 (01) :109-113
[3]  
ABLOWITZ MJ, 1991, CLARKSON SOLITONS NO
[4]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[5]   New exact solutions for some nonlinear differential equations using symbolic computation [J].
Chen, Y ;
Zheng, XD ;
Li, B ;
Zhang, HQ .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 149 (01) :277-298
[6]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[7]   PAINLEVE ANALYSIS AND BACKLUND TRANSFORMATION IN THE KURAMOTO-SIVASHINSKY EQUATION [J].
CONTE, R ;
MUSETTE, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (02) :169-177
[8]   Soliton solutions for the new complex version of a coupled KdV equation and a coupled MKdV equation [J].
Fan, EG ;
Chao, L .
PHYSICS LETTERS A, 2001, 285 (5-6) :373-376
[9]  
Hirota R., 2004, DIRECT METHOD SOLITO, DOI [10.1017/CBO9780511543043, DOI 10.1017/CBO9780511543043]
[10]   Explicit exact solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order [J].
Li, B ;
Chen, Y ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2003, 15 (04) :647-654