NeuroMechFly, a neuromechanical model of adult Drosophila melanogaster

被引:33
作者
Lobato-Rios, Victor [1 ,2 ]
Ramalingasetty, Shravan Tata [3 ]
Ozdil, Pembe Gizem [1 ,2 ,3 ]
Arreguit, Jonathan [3 ]
Ijspeert, Auke Jan [3 ]
Ramdya, Pavan [1 ,2 ]
机构
[1] Brain Mind Inst, Neuroengn Lab, Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Bioengn, Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne, Biorobot Lab, Lausanne, Switzerland
关键词
PATTERN GENERATING NETWORKS; MECHANICAL-PROPERTIES; WALKING; LOCOMOTION; COORDINATION; DRIVEN; SIMULATION; COCKROACH; BEHAVIOR; SYSTEM;
D O I
10.1038/s41592-022-01466-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Animal behavior emerges from an interaction between neural network dynamics, musculoskeletal properties and the physical environment. Accessing and understanding the interplay between these elements requires the development of integrative and morphologically realistic neuromechanical simulations. Here we present NeuroMechFly, a data-driven model of the widely studied organism, Drosophila melanogaster. NeuroMechFly combines four independent computational modules: a physics-based simulation environment, a biomechanical exoskeleton, muscle models and neural network controllers. To enable use cases, we first define the minimum degrees of freedom of the leg from real three-dimensional kinematic measurements during walking and grooming. Then, we show how, by replaying these behaviors in the simulator, one can predict otherwise unmeasured torques and contact forces. Finally, we leverage NeuroMechFly's full neuromechanical capacity to discover neural networks and muscle parameters that drive locomotor gaits optimized for speed and stability. Thus, NeuroMechFly can increase our understanding of how behaviors emerge from interactions between complex neuromechanical systems and their physical surroundings. NeuroMechFly enables simulations of adult Drosophila melanogaster. The platform combines a biomechanical representation of the fly body, models of the muscles, a neural controller and a physics-based simulation of the environment.
引用
收藏
页码:620 / +
页数:27
相关论文
共 87 条
  • [11] Insect walking is based on a decentralized architecture revealing a simple and robust controller
    Cruse, Holk
    Duerr, Volker
    Schmitz, Josef
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 365 (1850): : 221 - 250
  • [12] A mathematical modeling study of inter-segmental coordination during stick insect walking
    Daun-Gruhn, Silvia
    [J]. JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2011, 30 (02) : 255 - 278
  • [13] The manifold structure of limb coordination in walking Drosophila
    DeAngelis, Brian D.
    Zavatone-Veth, Jacob A.
    Clark, Damon A.
    [J]. ELIFE, 2019, 8
  • [14] A fast and elitist multiobjective genetic algorithm: NSGA-II
    Deb, K
    Pratap, A
    Agarwal, S
    Meyarivan, T
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) : 182 - 197
  • [15] Integrative model of Drosophila flight
    Dickson, William B.
    Straw, Andrew D.
    Dickinson, Michael H.
    [J]. AIAA JOURNAL, 2008, 46 (09) : 2150 - 2164
  • [16] The Scientific Case for Brain Simulations
    Einevoll, Gaute T.
    Destexhe, Alain
    Diesmann, Markus
    Gruen, Sonja
    Jirsa, Viktor
    de Kamps, Marc
    Migliore, Michele
    Ness, Torbjorn V.
    Plesser, Hans E.
    Schurmann, Felix
    [J]. NEURON, 2019, 102 (04) : 735 - 744
  • [17] A COMBINED NEURONAL AND MECHANICAL MODEL OF FISH SWIMMING
    EKEBERG, O
    [J]. BIOLOGICAL CYBERNETICS, 1993, 69 (5-6) : 363 - 374
  • [18] Dynamic simulation of insect walking
    Ekeberg, Ö
    Blümel, M
    Büschges, A
    [J]. ARTHROPOD STRUCTURE & DEVELOPMENT, 2004, 33 (03) : 287 - 300
  • [19] In vivo measurement of muscle output in intact Drosophila
    Elliott, Christopher J. H.
    Sparrow, John C.
    [J]. METHODS, 2012, 56 (01) : 78 - 86
  • [20] Ferris GF., 1950, BIOL DROSOPHILA, P368