Deformation mechanisms of electrostrictive graft elastomer

被引:15
|
作者
Wang, YQ [1 ]
Sun, CJ
Zhou, E
Su, J
机构
[1] Kansas State Univ, Dept Mech & Nucl Engn, Manhattan, KS 66506 USA
[2] NASA, Langley Res Ctr, Hampton, VA 23681 USA
关键词
D O I
10.1088/0964-1726/13/6/011
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The electrostrictive graft elastomer is a new type of electroactive polymer. Recently developed by NASA, it consists of flexible backbone chains, each with side chains, called grafts. Neighboring backbone grafts physically cross-link and form crystal units. The flexible backbone chain and the crystal graft unit consist of polarized monomers, which contain atoms with electric partial charges, generating dipole moments. When the elastomer is placed into an electric field, external rotating moments are applied to the dipole moment. This stimulates electrostrictive strain in the graft elastomer. In this paper, the deformation of the elastomer under the action of an electric field is explained by means of two dominant mechanisms: crystal graft unit rotation and backbone chain reorientation. A two-dimensional computational model is established to analyze the deformation.
引用
收藏
页码:1407 / 1413
页数:7
相关论文
共 50 条
  • [31] Inverse piezoelectric and electrostrictive response in freely suspended FLC elastomer film as detected by interferometric measurements
    Roy, SS
    Lehmann, W
    Gebhard, E
    Tolksdorf, C
    Zentel, R
    Kremer, F
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2002, 375 (01) : 253 - 268
  • [32] Deformation in magnetorheological elastomer and elastomer-ferromagnet composite driven by a magnetic field
    Zhou, GY
    Jiang, ZY
    SMART MATERIALS AND STRUCTURES, 2004, 13 (02) : 309 - 316
  • [33] High-Strain-Induced Deformation Mechanisms in Block-Graft and Multigraft Copolymers
    Schlegel, R.
    Duan, Y. X.
    Weidisch, R.
    Hoelzer, S.
    Schneider, K.
    Stamm, M.
    Uhrig, D.
    Mays, J. W.
    Heinrich, G.
    Hadjichristidis, N.
    MACROMOLECULES, 2011, 44 (23) : 9374 - 9383
  • [34] Deformation of a polydomain, smectic Liquid Crystalline Elastomer
    Ortiz, C
    Wagner, M
    Bhargava, N
    Ober, CK
    Kramer, EJ
    MACROMOLECULES, 1998, 31 (24) : 8531 - 8539
  • [35] Optimized deformation behavior of a dielectric elastomer generator
    Foerster, Florentine
    Schlaak, Helmut F.
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) 2014, 2014, 9056
  • [36] Multiaxial deformation and failure of acrylic elastomer membranes
    Schmidt, A.
    Rothemund, P.
    Mazza, E.
    SENSORS AND ACTUATORS A-PHYSICAL, 2012, 174 : 133 - 138
  • [37] Mechanics and mechanisms of puncture of elastomer membranes
    Nguyen, CT
    Vu-Khanh, T
    JOURNAL OF MATERIALS SCIENCE, 2004, 39 (24) : 7361 - 7364
  • [38] Dielectric elastomer membranes undergoing inhomogeneous deformation
    He, Tianhu
    Zhao, Xuanhe
    Suo, Zhigang
    JOURNAL OF APPLIED PHYSICS, 2009, 106 (08)
  • [39] Deformation and adhesion of elastomer microparticles evaluated by AFM
    Vakarelski, IU
    Toritani, A
    Nakayama, M
    Higashitani, K
    LANGMUIR, 2001, 17 (16) : 4739 - 4745
  • [40] Active deformation of dielectric elastomer for detection of biofouling
    Krpovic, Sara
    Dam-Johansen, Kim
    Skov, Anne Ladegaard
    Rosset, Samuel
    Anderson, Iain
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES (EAPAD) XXII, 2020, 11375