Numerical simulation of two-dimensional and three-dimensional axisymmetric advection-diffusion systems with complex geometries using finite-volume methods

被引:2
作者
Ashbourn, J. M. A. [1 ]
Geris, L. [2 ]
Gerisch, A. [3 ]
Young, C. J. S. [4 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[2] Katholieke Univ Leuven, Div Biomech & Engn Design, B-3001 Louvain, Belgium
[3] Univ Halle Wittenberg, Inst Math, D-06099 Halle, Saale, Germany
[4] Univ Oxford, Magdalen Coll, Oxford OX1 4AU, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2010年 / 466卷 / 2118期
关键词
finite-volume method; advection; diffusion; Cartesian grid; cut cells; EMBEDDED BOUNDARY METHOD; HYPERBOLIC CONSERVATION-LAWS; IRREGULAR DOMAINS; POISSONS-EQUATION; HEAT-EQUATION; GRIDS;
D O I
10.1098/rspa.2009.0527
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A finite-volume method has been developed that can deal accurately with complicated, curved boundaries for both two-dimensional and three-dimensional axisymmetric advection-diffusion systems. The motivation behind this is threefold. Firstly, the ability to model the correct geometry of a situation yields more accurate results. Secondly, smooth geometries eliminate corner singularities in the calculation of, for example, mechanical variables and thirdly, different geometries can be tested for experimental applications. An example illustrating each of these is given: fluid carrying a dye and rotating in an annulus, bone fracture healing in mice, and using vessels of different geometry in an ultracentrifuge.
引用
收藏
页码:1621 / 1643
页数:23
相关论文
共 20 条
[1]  
[Anonymous], 2002, Cambridge Texts in Applied Mathematics, DOI [10.1017/CBO9780511791253, DOI 10.1017/CBO9780511791253]
[2]   A mathematical framework to study the effects of growth factor influences on fracture healing [J].
Bailón-Plaza, A ;
van der Meulen, MCH .
JOURNAL OF THEORETICAL BIOLOGY, 2001, 212 (02) :191-209
[3]   h-box methods for the approximation of hyperbolic conservation laws on irregular grids [J].
Berger, MJ ;
Helzel, C ;
Leveque, RJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (03) :893-918
[4]  
BERGER MJ, 1989, P 9 AIAA COMP FLUID
[5]   A Cartesian grid finite-volume method for the advection-diffusion equation in irregular geometries [J].
Calhoun, D ;
LeVeque, RJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 157 (01) :143-180
[6]   Logically Rectangular Grids and Finite Volume Methods for PDEs in Circular and Spherical Domains [J].
Calhoun, Donna A. ;
Helzel, Christiane ;
LeVeque, Randall J. .
SIAM REVIEW, 2008, 50 (04) :723-752
[7]   A Cartesian grid embedded boundary method for hyperbolic conservation laws [J].
Colella, P ;
Graves, DT ;
Keen, BJ ;
Modiano, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 211 (01) :347-366
[8]   Mathematical modeling of fracture healing in mice: comparison between experimental data and numerical simulation results [J].
Geris, Liesbet ;
Gerisch, Alf ;
Maes, Christa ;
Carmeliet, Geert ;
Weiner, Ruediger ;
Sloten, Jos Vander ;
Van Oosterwyck, Hans .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2006, 44 (04) :280-289
[9]   Robust numerical methods for taxis-diffusion-reaction systems: Applications to biomedical problems [J].
Gerisch, A ;
Chaplain, MAJ .
MATHEMATICAL AND COMPUTER MODELLING, 2006, 43 (1-2) :49-75
[10]  
GERISCH A, 2001, THESIS M LUTHER U HA