The hp-BEM with quasi-uniform meshes for the electric field integral equation on polyhedral surfaces: A priori error analysis

被引:8
作者
Bespalov, Alexei [2 ]
Heuer, Norbert [1 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
[2] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, West London, England
基金
英国工程与自然科学研究理事会;
关键词
hp-version with quasi-uniform meshes; Boundary element method; Electric field integral equation; Time-harmonic electro-magnetic scattering; A priori error estimate; BOUNDARY-ELEMENT METHODS; EDGE FINITE-ELEMENTS; DISCRETE COMPACTNESS; LIPSCHITZ POLYHEDRA; P-INTERPOLATION; DIMENSIONS; VERSION; DOMAINS; TRACES; CONVERGENCE;
D O I
10.1016/j.apnum.2010.03.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an a priori error analysis of the hp-version of the boundary element method for the electric field integral equation on a piecewise plane (open or closed) Lipschitz surface. We use H(div)-conforming discretisations with Raviart-Thomas elements on a sequence of quasi-uniform meshes of triangles and/or parallelograms. Assuming the regularity of the solution to the electric field integral equation in terms of Sobolev spaces of tangential vector fields, and based upon the known quasi-optimal convergence, we prove an a priori error estimate of the method in the energy norm. This estimate proves the expected rate of convergence with respect to the mesh parameter h and the polynomial degree p. (C) 2010 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:705 / 718
页数:14
相关论文
共 36 条