Multifold Acceleration of Diffusion MRI via Deep Learning Reconstruction from Slice-Undersampled Data

被引:11
作者
Hong, Yoonmi
Chen, Geng
Yap, Pew-Thian [1 ]
Shen, Dinggang [1 ]
机构
[1] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27515 USA
来源
INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2019 | 2019年 / 11492卷
关键词
Diffusion MRI; Accelerated acquisition; Super resolution; Graph CNN; Adversarial learning; SUPERRESOLUTION RECONSTRUCTION; WEIGHTED IMAGES; ACQUISITION; RESOLUTION;
D O I
10.1007/978-3-030-20351-1_41
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diffusion MRI (dMRI), while powerful for characterization of tissue microstructure, suffers from long acquisition time. In this paper, we present a method for effective diffusion MRI reconstruction from slice-undersampled data. Instead of full diffusion-weighted (DW) image volumes, only a subsample of equally-spaced slices need to be acquired. We show that complementary information from DW volumes corresponding to different diffusion wavevectors can be harnessed using graph convolutional neural networks for reconstruction of the full DW volumes. The experimental results indicate a high acceleration factor of up to 5 can be achieved with minimal information loss.
引用
收藏
页码:530 / 541
页数:12
相关论文
共 23 条
  • [21] Enhancing thin slice 3D T2-weighted prostate MRI with super-resolution deep learning reconstruction: Impact on image quality and PI-RADS assessment
    Shiraishi, Kaori
    Nakaura, Takeshi
    Kobayashi, Naoki
    Uetani, Hiroyuki
    Nagayama, Yasunori
    Kidoh, Masafumi
    Yatsuda, Junji
    Kurahashi, Ryoma
    Kamba, Tomomi
    Yamahita, Yuichi
    Hirai, Toshinori
    MAGNETIC RESONANCE IMAGING, 2025, 117
  • [22] A combined data assimilation and deep learning approach for continuous spatio-temporal SWE reconstruction from sparse ground tracks
    Guidicelli, Matteo
    Aalstad, Kristoffer
    Treichler, Desiree
    Salzmann, Nadine
    JOURNAL OF HYDROLOGY X, 2024, 25
  • [23] Feasibility study of super-resolution deep learning-based reconstruction using k-space data in brain diffusion-weighted images
    Matsuo, Kensei
    Nakaura, Takeshi
    Morita, Kosuke
    Uetani, Hiroyuki
    Nagayama, Yasunori
    Kidoh, Masafumi
    Hokamura, Masamichi
    Yamashita, Yuichi
    Shinoda, Kensuke
    Ueda, Mitsuharu
    Mukasa, Akitake
    Hirai, Toshinori
    NEURORADIOLOGY, 2023, 65 (11) : 1619 - 1629