Multifold Acceleration of Diffusion MRI via Deep Learning Reconstruction from Slice-Undersampled Data

被引:11
|
作者
Hong, Yoonmi
Chen, Geng
Yap, Pew-Thian [1 ]
Shen, Dinggang [1 ]
机构
[1] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27515 USA
来源
INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2019 | 2019年 / 11492卷
关键词
Diffusion MRI; Accelerated acquisition; Super resolution; Graph CNN; Adversarial learning; SUPERRESOLUTION RECONSTRUCTION; WEIGHTED IMAGES; ACQUISITION; RESOLUTION;
D O I
10.1007/978-3-030-20351-1_41
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diffusion MRI (dMRI), while powerful for characterization of tissue microstructure, suffers from long acquisition time. In this paper, we present a method for effective diffusion MRI reconstruction from slice-undersampled data. Instead of full diffusion-weighted (DW) image volumes, only a subsample of equally-spaced slices need to be acquired. We show that complementary information from DW volumes corresponding to different diffusion wavevectors can be harnessed using graph convolutional neural networks for reconstruction of the full DW volumes. The experimental results indicate a high acceleration factor of up to 5 can be achieved with minimal information loss.
引用
收藏
页码:530 / 541
页数:12
相关论文
共 23 条
  • [1] Reconstructing High-Quality Diffusion MRI Data from Orthogonal Slice-Undersampled Data Using Graph Convolutional Neural Networks
    Hong, Yoonmi
    Chen, Geng
    Yap, Pew-Thian
    Shen, Dinggang
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 : 529 - 537
  • [2] Dynamic MRI reconstruction from undersampled data with an anatomical prescan
    Rasch, Julian
    Kolehmainen, Ville
    Nivajarvi, Riikka
    Kettunen, Mikko
    Grohn, Olli
    Burger, Martin
    Brinkmann, Eva-Maria
    INVERSE PROBLEMS, 2018, 34 (07)
  • [3] Deep neural network inspired by iterative shrinkage-thresholding algorithm with data consistency (NISTAD) for fast Undersampled MRI reconstruction
    Qiu, Wenyuan
    Li, Dongxiao
    Jin, Xinyu
    Liu, Fan
    Sun, Bin
    MAGNETIC RESONANCE IMAGING, 2020, 70 : 134 - 144
  • [4] Reconstruction of dynamic image series from undersampled MRI data using data-driven model consistency condition (MOCCO)
    Velikina, Julia V.
    Samsonov, Alexey A.
    MAGNETIC RESONANCE IN MEDICINE, 2015, 74 (05) : 1279 - 1290
  • [5] Thalamus Segmentation Using Deep Learning with Diffusion MRI Data: An Open Benchmark
    Pinheiro, Gustavo Retuci
    Brusini, Lorenza
    Carmo, Diedre
    Proa, Renata
    Abreu, Thays
    Appenzeller, Simone
    Menegaz, Gloria
    Rittner, Leticia
    APPLIED SCIENCES-BASEL, 2023, 13 (09):
  • [6] DDParcel: Deep Learning Anatomical Brain Parcellation From Diffusion MRI
    Zhang, Fan
    Cho, Kang Ik Kevin
    Seitz-Holland, Johanna
    Ning, Lipeng
    Legarreta, Jon Haitz
    Rathi, Yogesh
    Westin, Carl-Fredrik
    O'Donnell, Lauren J.
    Pasternak, Ofer
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (03) : 1191 - 1202
  • [7] Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data
    Daducci, Alessandro
    Canales-Rodriguez, Erick J.
    Zhang, Hui
    Dyrby, Tim B.
    Alexander, Daniel C.
    Thiran, Jean-Philippe
    NEUROIMAGE, 2015, 105 : 32 - 44
  • [8] Deep learning prediction of diffusion MRI data with microstructure-sensitive loss functions
    Chen, Geng
    Hong, Yoonmi
    Huynh, Khoi Minh
    Yap, Pew-Thian
    MEDICAL IMAGE ANALYSIS, 2023, 85
  • [9] Diffusion MRI data analysis assisted by deep learning synthesized anatomical images (DeepAnat)
    Li, Ziyu
    Fan, Qiuyun
    Bilgic, Berkin
    Wang, Guangzhi
    Wu, Wenchuan
    Polimeni, Jonathan R.
    Miller, Karla L.
    Huang, Susie Y.
    Tian, Qiyuan
    MEDICAL IMAGE ANALYSIS, 2023, 86
  • [10] Graph-Based Deep Learning for Prediction of Longitudinal Infant Diffusion MRI Data
    Kim, Jaeil
    Hong, Yoonmi
    Chen, Geng
    Lin, Weili
    Yap, Pew-Thian
    Shen, Dinggang
    COMPUTATIONAL DIFFUSION MRI (CDMRI 2018), 2019, : 133 - 141