Prediction of multivessel coronary artery disease and candidates for stress-only imaging using multivariable models with myocardial perfusion imaging

被引:5
作者
Kunita, Yuji [1 ]
Nakajima, Kenichi [2 ]
Nakata, Tomoaki [3 ]
Kudo, Takashi [4 ]
Kinuya, Seigo [1 ]
机构
[1] Kanazawa Univ Hosp, Dept Nucl Med, Kanazawa, Ishikawa, Japan
[2] Kanazawa Univ, Dept Funct Imaging & Artificial Intelligence, Kanazawa, Ishikawa, Japan
[3] Hakodate Goryoukaku Hosp, Dept Cardiovasc Med, Hakodate, Hokkaido, Japan
[4] Nagasaki Univ, Atom Bomb Dis Inst, Dept Radioisotope Med, Atom Bomb Dis & Hibakusha Med Unit, Nagasaki, Japan
关键词
Coronary artery disease; Single-photon emission computed tomography; Multivariable model; Quantitation; EMISSION COMPUTED-TOMOGRAPHY; INCREMENTAL PROGNOSTIC VALUE; ARTIFICIAL NEURAL-NETWORK; LUNG THALLIUM UPTAKE; JAPANESE PATIENTS; RISK; SPECT; ISCHEMIA; STRATIFICATION; MULTICENTER;
D O I
10.1007/s12149-022-01751-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Selecting patients with coronary multivessel disease (MVD) or no stenosis using myocardial perfusion imaging (MPI) is challenging. We aimed to create a model to predict MVD using a combination of quantitative MPI values and background factors of patients. We also assessed whether patients in the same database could be selected who do not require rest studies (stress-only imaging). Methods We analyzed data from 1001 patients who had been assessed by stress MPI at 12 centers and 463 patients who had not undergone revascularization in Japan. Quantitative values based on MPI were obtained using cardioREPO software, which included myocardial perfusion defect scores, left ventricular ejection fractions and volumes. Factors in MPI and clinical backgrounds that could predict MVD were investigated using univariate and multivariate analyses. We also investigated whether stress data alone could predict patients without coronary stenosis to identify candidates for stress-only imaging. Results We selected summed stress score (SSS), rest end-diastolic volume, and hypertension to create a predictive model for MVD. A logistic regression model was created with an area under the receiver operating characteristics curve (AUC) of 0.825. To more specifically predict coronary three-vessel disease, the AUC was 0.847 when SSS, diabetes, and hypertension were selected. The mean probabilities of abnormality based on the MVD prediction model were 12%, 24%, 40%, and 51% for no-, one-, two-, and three-vessel disease, respectively (p < 0.0001). For the model to select patients with stress-only imaging, the AUC was 0.78 when the model was created using SSS, stress end-systolic volume and the number of risk factors (diabetes, hypertension, chronic kidney disease, and a history of smoking). Conclusion A model analysis combining myocardial SPECT and clinical data can predict MVD, and can select patients for stress-only tests. Our models should prove useful for clinical applications.
引用
收藏
页码:674 / 683
页数:10
相关论文
共 35 条
[11]   Nuclear cardiology practice and associated radiation doses in Europe: results of the IAEA Nuclear Cardiology Protocols Study (INCAPS) for the 27 European countries [J].
Lindner, Oliver ;
Pascual, Thomas N. B. ;
Mercuri, Mathew ;
Acampa, Wanda ;
Burchert, Wolfgang ;
Flotats, Albert ;
Kaufmann, Philipp A. ;
Kitsiou, Anastasia ;
Knuuti, Juhani ;
Underwood, S. Richard ;
Vitola, Joao V. ;
Mahmarian, John J. ;
Karthikeyan, Ganesan ;
Better, Nathan ;
Rehani, Madan M. ;
Kashyap, Ravi ;
Dondi, Maurizio ;
Paez, Diana ;
Einstein, Andrew J. ;
Bouyoucef, S. E. ;
Lele, V. ;
Magboo, V. P. C. ;
Mut, F. ;
Meeks, J. B. ;
Alexanderson, E. ;
Allam, A. ;
Al-Mallah, M. H. ;
Bom, H. ;
Jerome, S. ;
Luxenburg, O. ;
Mahmarian, J. ;
Shaw, L. J. ;
Vitola, J. ;
Amouri, W. ;
Essabbah, H. ;
Gassama, S. S. ;
Makhdomi, K. B. ;
El Mustapha, G. I. E. ;
El Ouchdi, N. ;
Qais, N. ;
Soni, N. ;
Vangu, W. ;
Abazid, R. M. ;
Adams, B. ;
Agarwal, V. ;
Alfeeli, M. A. ;
Alnafisi, N. ;
Bernabe, L. ;
Bural, G. G. ;
Chaiwatanarat, T. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2016, 43 (04) :718-728
[12]   Diagnostic accuracy of stress-only myocardial perfusion SPECT improved by deep learning [J].
Liu, Hui ;
Wu, Jing ;
Miller, Edward J. ;
Liu, Chi ;
Yaqiang ;
Liu ;
Liu, Yi-Hwa .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (09) :2793-2800
[13]   Incremental Prognostic Value of Cardiac Function Assessed by ECG-Gated Myocardial Perfusion SPECT for the Prediction of Future Acute Coronary Syndrome [J].
Matsumoto, Naoya ;
Sato, Yuichi ;
Suzuki, Yasuyuki ;
Kasama, Shu ;
Nakano, Yoshimochi ;
Kato, Masahiko ;
Yoda, Shunichi ;
Miki, Takaaki ;
Iida, Jun ;
Kunimasa, Taeko ;
Tadehara, Futoshi ;
Nagao, Ken ;
Hirayama, Atsushi .
CIRCULATION JOURNAL, 2008, 72 (12) :2035-2039
[14]   Comprehensive assessment of coronary artery stenoses - Computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina [J].
Meijboom, W. Bob ;
Van Mieghem, Carlos A. G. ;
van Pelt, Niels ;
Weustink, Annick ;
Pugliese, Francesca ;
Mollet, Nico R. ;
Boersma, Eric ;
Regar, Eveline ;
van Geuns, Robert J. ;
de Jaegere, Peter J. ;
Serruys, Patrick W. ;
Krestin, Gabriel P. ;
de Feyter, Pim J. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2008, 52 (08) :636-643
[15]   Creation and characterization of japanese standards for myocardial perfusion SPECT: Database from the Japanese society of nuclear medicine working group [J].
Nakajima, Kenichi ;
Kumita, Shinichiro ;
Ishida, Yoshio ;
Momose, Mitsuru ;
Hashimoto, Jun ;
Morita, Koichi ;
Taki, Junichi ;
Yamashina, Shohei ;
Maruno, Hirotaka ;
Ogawa, Masami ;
Kubota, Masahiro ;
Takahashi, Munehiro ;
Odagawa, Tetsuro ;
Yokozuka, Koichi .
ANNALS OF NUCLEAR MEDICINE, 2007, 21 (09) :505-511
[16]   Artificial neural network retrained to detect myocardial ischemia using a Japanese multicenter database [J].
Nakajima, Kenichi ;
Okuda, Koichi ;
Watanabe, Satoru ;
Matsuo, Shinro ;
Kinuya, Seigo ;
Toth, Karin ;
Edenbrandt, Lars .
ANNALS OF NUCLEAR MEDICINE, 2018, 32 (05) :303-310
[17]   Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study [J].
Nakajima, Kenichi ;
Kudo, Takashi ;
Nakata, Tomoaki ;
Kiso, Keisuke ;
Kasai, Tokuo ;
Taniguchi, Yasuyo ;
Matsuo, Shinro ;
Momose, Mitsuru ;
Nakagawa, Masayasu ;
Sarai, Masayoshi ;
Hida, Satoshi ;
Tanaka, Hirokazu ;
Yokoyama, Kunihiko ;
Okuda, Koichi ;
Edenbrandt, Lars .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 (13) :2280-2289
[18]   Diagnostic Performance of Artificial Neural Network for Detecting Ischemia in Myocardial Perfusion Imaging [J].
Nakajima, Kenichi ;
Matsuo, Shinro ;
Wakabayashi, Hiroshi ;
Yokoyama, Kunihiko ;
Bunko, Hisashi ;
Okuda, Koichi ;
Kinuya, Seigo ;
Nystrom, Karin ;
Edenbrandt, Lars .
CIRCULATION JOURNAL, 2015, 79 (07) :1549-1556
[19]   Prognostic value of myocardial perfusion and ventricular function in a Japanese multicenter cohort study (J-ACCESS): the first-year total events and hard events [J].
Nakajima, Kenichi ;
Kusuoka, Hideo ;
Nishimura, Shigeyuki ;
Yamashina, Akira ;
Nishimura, Tsunehiko .
ANNALS OF NUCLEAR MEDICINE, 2009, 23 (04) :373-381
[20]   Primary prevention of cardiovascular disease with pravastatin in Japan (MEGA Study): a prospective randomised controlled trial [J].
Nakamura, Haruo ;
Arakawa, Kikuo ;
Itakura, Hiroshige ;
Kitabatake, Akira ;
Goto, Yoshio ;
Toyota, Takayoshi ;
Nakaya, Noriaki ;
Nishimoto, Shoji ;
Muranaka, Masaharu ;
Yamamoto, Akira ;
Mizuno, Kyoichi ;
Ohashi, Yasuo .
LANCET, 2006, 368 (9542) :1155-1163