Description of the Inelastic Collision of Two Solitary Waves for the BBM Equation

被引:17
作者
Martel, Yvan [1 ]
Merle, Frank [2 ,3 ]
Mizumachi, Tetsu [4 ]
机构
[1] Univ Versailles St Quentin en Yvelines, F-78035 Versailles, France
[2] Univ Cergy Pontoise, IHES, F-95302 Cergy Pontoise, France
[3] CNRS, F-95302 Cergy Pontoise, France
[4] Kyushu Univ, Fac Math, Fukuoka 8128581, Japan
关键词
KORTEWEG-DEVRIES EQUATION; GENERALIZED KDV EQUATIONS; DE-VRIES EQUATION; SUBCRITICAL GKDV EQUATIONS; ASYMPTOTIC STABILITY; SOLITONS; SCATTERING; EXISTENCE; SYSTEMS; WATER;
D O I
10.1007/s00205-009-0244-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the collision of two solitary waves of the BBM equation is inelastic but almost elastic in the case where one solitary wave is small in the energy space. We show precise estimates of the nonzero residue due to the collision. Moreover, we give a precise description of the collision phenomenon (change of size of the solitary waves and shifts in their trajectories). To prove these results, we extend the method introduced in Martel and Merle (Description of two soliton collision for the quartic gKdV equation, submitted preprint. http://arxiv.org/abs/0709.2672;Commun Math Phys 286:39-79, 2009) for the generalized KdV equation, in particular in the quartic case. The main argument is the construction of an explicit approximate solution in the collision region.
引用
收藏
页码:517 / 574
页数:58
相关论文
共 50 条
[41]   Solitary waves of the two-dimensional Camassa-Holm-nonlinear Schrodinger equation [J].
Ward, C. B. ;
Mylonas, I. K. ;
Kevrekidis, P. G. ;
Frantzeskakis, D. J. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (49)
[42]   Interaction of solitary waves for the generalized KdV equation [J].
Garcia Alvarado, Martin G. ;
Omel'yanov, Georgii A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (08) :3204-3218
[43]   Global bifurcation of solitary waves for the Whitham equation [J].
Truong, Tien ;
Wahlen, Erik ;
Wheeler, Miles H. .
MATHEMATISCHE ANNALEN, 2022, 383 (3-4) :1521-1565
[44]   Orbital stability of solitary waves for Kundu equation [J].
Zhang, Weiguo ;
Qin, Yinghao ;
Zhao, Yan ;
Guo, Boling .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (05) :1591-1615
[45]   Head-on Collision of Ion-Acoustic Solitary Waves with Two Negative Ion Species in Electron-Positron-Ion Plasmas and Production of Rogue Waves [J].
Alam, M. S. ;
Talukder, M. R. .
PLASMA PHYSICS REPORTS, 2019, 45 (09) :871-887
[46]   Multi solitary waves for a fourth order nonlinear Schrodinger type equation [J].
Wang, Zhong .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 :287-308
[47]   Instability of Solitary Waves for the Generalized Klein-Gordon-Hartree Equation [J].
Kostadinov, Boyan ;
Tarulli, Mirko ;
Venkov, George .
PROCEEDINGS OF THE 45TH INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'19), 2019, 2172
[48]   Multi-Solitary Waves for the Nonlinear Klein-Gordon Equation [J].
Bellazzini, Jacopo ;
Ghimenti, Marco ;
Le Coz, Stefan .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (08) :1479-1522
[49]   On head-on collision between two solitary waves in shallow water: the use of the extended PLK method [J].
Ozden, A. Erinc ;
Demiray, Hilmi .
NONLINEAR DYNAMICS, 2015, 82 (1-2) :73-84
[50]   Application of Particle-in-Cell Simulation to the Description of Ion Acoustic Solitary Waves [J].
Qi, Xin ;
Xu, Yan-Xia ;
Zhao, Xiao-Ying ;
Zhang, Ling-Yu ;
Duan, Wen-Shan ;
Yang, Lei .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (11) :3815-3820