A WordNet-based approach to feature selection in text categorization

被引:1
作者
Zhang, K [1 ]
Sun, J [1 ]
Wang, B [1 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing 100080, Peoples R China
来源
INTELLIGENT INFORMATION PROCESSING II | 2005年 / 163卷
关键词
feature selection; WordNet; text categorization;
D O I
10.1007/0-387-23152-8_59
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new feature selection method for text categorization. In this method, word tendency, which takes related words into consideration, is used to select best terms. Our experiments on binary classification tasks show that our method achieves better than DF and IG when the classes are semantically discriminative. Furthermore, our best performance is usually achieved in fewer features.
引用
收藏
页码:475 / 484
页数:10
相关论文
共 12 条
  • [1] [Anonymous], 1992, P 3 C APPL NAT LANG
  • [2] BAKER LD, 1998, P SIGIR 98 MELB AUST
  • [3] BLUM A, 1998, P COLT 98
  • [4] DEBUENAGA M, 1997, P RANLP 97
  • [5] *KJERST AAS, 1999, LIN EIKV TXT CAT SUR
  • [6] Li X., 1995, P IJCAI 95 MONTR CAN
  • [7] Miller George., 1990, Journal of Lexicography, V3
  • [8] Scott S., 1998, P COLING ACL WORKSH, P45
  • [9] Sebastiani F., 2002, ACM COMPUTING SURVEY, V34
  • [10] YANG Y, 1997, P ICML 97 NASHV TN