Fabrication of poly(lactic acid)/Ti composite scaffolds with enhanced mechanical properties and biocompatibility via fused filament fabrication (FFF)-based 3D printing

被引:94
|
作者
Lee, Jina [1 ]
Lee, Hyun [2 ]
Cheon, Kwang-Hee [2 ]
Park, Cheonil [2 ]
Jang, Tae-Sik [1 ]
Kim, Hyoun-Ee [2 ]
Jung, Hyun-Do [1 ]
机构
[1] Korea Inst Ind Technol, Res Inst Adv Mfg Technol, Incheon 21999, South Korea
[2] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Material extrusion; Poly(lactic acid); Titanium; Composite; Bone tissue engineering; THERMAL-PROPERTIES; BONE; TITANIUM; REINFORCEMENT; POLYMER; BIOMATERIALS; PERFORMANCE; MORPHOLOGY; STABILITY; ROUGHNESS;
D O I
10.1016/j.addma.2019.100883
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ideal bone substitutes should ensure good integration with bone tissue and are therefore required to exhibit good mechanical stability and biocompatibility. Consequently, the high elastic modulus (similar to that of bone), thermoplasticity, and biocompatibility of poly(lactic acid) (PLA) make it well suited for the fabrication of such substitutes by fused filament fabrication (FFF)-based 3D printing. However, the demands of present-day applications require the mechanical and biological properties of PLA to be further improved. Herein, we fabricated PLA/Ti composite scaffolds by FFF-based 3D printing and used thermogravimetric analysis to confirm the homogenous dispersion of Ti particles in the PLA matrix at loadings of 5-20 vol%. Notably, the thermal stability of these composites and the crystallization temperature/crystallinity degree of PLA therein decreased with increasing Ti content, while the corresponding glass transition temperature and melting temperature concomitantly increased. The compressive and tensile strengths of PLA/Ti composites increased with Ti increasing loading until it reached 10 vol% and were within the range of real bone values, while the impact strengths of the above composites significantly exceeded that of pure PLA. The incorporation of Ti resulted in enhanced in vitro biocompatibility, promoting the initial attachment, proliferation, and differentiation of pre-osteoblast cells, which allowed us to conclude that the prepared PLA/Ti composite scaffolds with enhanced mechanical and biological properties are promising candidates for bone tissue engineering applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Modification of poly(lactic acid) filament with expandable graphite for additive manufacturing using fused filament fabrication (FFF): effect on thermal and mechanical properties
    Ayres Melillo, Joao Miguel
    Pereira, Iaci Miranda
    Mottin, Artur Caron
    da Silva Araujo, Fernando Gabriel
    POLIMEROS-CIENCIA E TECNOLOGIA, 2021, 31 (02):
  • [2] Evaluation of the Deterioration of the Mechanical Properties of Poly(lactic acid) Structures Fabricated by a Fused Filament Fabrication 3D Printer
    Suzuki, Miho
    Yonezawa, Asahi
    Takeda, Kohei
    Yamada, Akira
    INVENTIONS, 2019, 4 (01)
  • [3] Fused Filament Fabrication of Poly (Lactic Acid) Reinforced with Silane-Treated Cellulose Fiber for 3D Printing
    Seo, Young-Rok
    Kim, Birm-June
    Journal of the Korean Wood Science and Technology, 2024, 52 (03): : 205 - 220
  • [4] Fabrication of poly(lactic acid), poly(butylene succinate), and poly(hydroxybutyrate) bio-based and biodegradable blends for application in fused filament fabrication-based 3D printing
    Sabalina, Alisa
    Gaidukovs, Sergejs
    Jurinovs, Maksims
    Grase, Liga
    Platnieks, Oskars
    JOURNAL OF APPLIED POLYMER SCIENCE, 2023, 140 (28)
  • [5] 3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation
    Malinauskas, Mangirdas
    Rekstyte, Sima
    Lukosevicius, Laurynas
    Butkus, Simas
    Balciunas, Evaldas
    Peciukaityte, Milda
    Baltriukiene, Daiva
    Bukelskiene, Virginija
    Butkevicius, Arunas
    Kucevicius, Povilas
    Rutkunas, Vygandas
    Juodkazis, Saulius
    MICROMACHINES, 2014, 5 (04) : 839 - 858
  • [6] Luminescent 3D printed poly(lactic acid) nanocomposites with enhanced mechanical properties
    Kothavade, Premkumar Anil
    Yadav, Prashant
    Nidhankar, Aakash D.
    Torris, Arun
    Pol, Harshawardhan
    Kafi, Abdullah
    Bateman, Stuart
    Sukumaran, Santosh Babu
    Shanmuganathan, Kadhiravan
    POLYMER ENGINEERING AND SCIENCE, 2023, 63 (07) : 2059 - 2072
  • [7] 3D PEEK Objects Fabricated by Fused Filament Fabrication (FFF)
    Baek, Inwoo
    Kwon, Oeun
    Lim, Chul-Min
    Park, Kyoung Youl
    Bae, Chang-Jun
    MATERIALS, 2022, 15 (03)
  • [8] Influence of the printing parameters on the properties of Poly(lactic acid) scaffolds obtained by fused deposition modeling 3D printing
    Nascimento, Abraao C. D., Jr.
    Mota, Raquel C. D. A. G.
    Menezes, Livia R. D.
    Silva, Emerson O. D.
    POLYMERS & POLYMER COMPOSITES, 2021, 29 (9_SUPPL) : S1052 - S1062
  • [9] Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid
    Balani, Shahriar Bakrani
    Chabert, France
    Nassiet, Valerie
    Cantarel, Arthur
    ADDITIVE MANUFACTURING, 2019, 25 : 112 - 121
  • [10] Fabrication of 3D porous poly(lactic acid)-based composite scaffolds with tunable biodegradation for bone tissue engineering
    Mao, Daoyong
    Li, Qing
    Li, Daikun
    Chen, Yashi
    Chen, Xinhong
    Xu, Xi
    MATERIALS & DESIGN, 2018, 142 : 1 - 10