Fabrication of poly(lactic acid)/Ti composite scaffolds with enhanced mechanical properties and biocompatibility via fused filament fabrication (FFF)-based 3D printing

被引:101
作者
Lee, Jina [1 ]
Lee, Hyun [2 ]
Cheon, Kwang-Hee [2 ]
Park, Cheonil [2 ]
Jang, Tae-Sik [1 ]
Kim, Hyoun-Ee [2 ]
Jung, Hyun-Do [1 ]
机构
[1] Korea Inst Ind Technol, Res Inst Adv Mfg Technol, Incheon 21999, South Korea
[2] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Material extrusion; Poly(lactic acid); Titanium; Composite; Bone tissue engineering; THERMAL-PROPERTIES; BONE; TITANIUM; REINFORCEMENT; POLYMER; BIOMATERIALS; PERFORMANCE; MORPHOLOGY; STABILITY; ROUGHNESS;
D O I
10.1016/j.addma.2019.100883
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ideal bone substitutes should ensure good integration with bone tissue and are therefore required to exhibit good mechanical stability and biocompatibility. Consequently, the high elastic modulus (similar to that of bone), thermoplasticity, and biocompatibility of poly(lactic acid) (PLA) make it well suited for the fabrication of such substitutes by fused filament fabrication (FFF)-based 3D printing. However, the demands of present-day applications require the mechanical and biological properties of PLA to be further improved. Herein, we fabricated PLA/Ti composite scaffolds by FFF-based 3D printing and used thermogravimetric analysis to confirm the homogenous dispersion of Ti particles in the PLA matrix at loadings of 5-20 vol%. Notably, the thermal stability of these composites and the crystallization temperature/crystallinity degree of PLA therein decreased with increasing Ti content, while the corresponding glass transition temperature and melting temperature concomitantly increased. The compressive and tensile strengths of PLA/Ti composites increased with Ti increasing loading until it reached 10 vol% and were within the range of real bone values, while the impact strengths of the above composites significantly exceeded that of pure PLA. The incorporation of Ti resulted in enhanced in vitro biocompatibility, promoting the initial attachment, proliferation, and differentiation of pre-osteoblast cells, which allowed us to conclude that the prepared PLA/Ti composite scaffolds with enhanced mechanical and biological properties are promising candidates for bone tissue engineering applications.
引用
收藏
页数:11
相关论文
共 68 条
[1]   Impact modified PLA-hydroxyapatite composites - Thermo-mechanical properties [J].
Akindoyo, John O. ;
Beg, Mohammad D. H. ;
Ghazali, Suriati ;
Heim, Hans P. ;
Feldmann, Maik .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2018, 107 :326-333
[2]   Effects of surface modification on dispersion, mechanical, thermal and dynamic mechanical properties of injection molded PLA-hydroxyapatite composites [J].
Akindoyo, John O. ;
Beg, Mohammad D. H. ;
Ghazali, Suriati ;
Heim, Hans P. ;
Feldmann, Maik .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2017, 103 :96-105
[3]   A new metaphyseal bone defect model in osteoporotic rats to study biomaterials for the enhancement of bone healing in osteoporotic fractures [J].
Alt, Volker ;
Thormann, Ulrich ;
Ray, Seemun ;
Zahner, Daniel ;
Duerselen, Lutz ;
Lips, Katrin ;
El Khassawna, Thaqif ;
Heiss, Christian ;
Riedrich, Alina ;
Schlewitz, Gudrun ;
Ignatius, Anita ;
Kampschulte, Marian ;
von Dewitz, Helena ;
Heinemann, Sascha ;
Schnettler, Reinhard ;
Langheinrich, Alexander .
ACTA BIOMATERIALIA, 2013, 9 (06) :7035-7042
[4]   Fracture mechanical characterization and lifetime estimation of near-homogeneous components produced by fused filament fabrication [J].
Arbeiter, Florian ;
Spoerk, Martin ;
Wiener, Johannes ;
Gosch, Anja ;
Pinter, Gerald .
POLYMER TESTING, 2018, 66 :105-113
[5]   Bone tissue engineering using 3D printing [J].
Bose, Susmita ;
Vahabzadeh, Sahar ;
Bandyopadhyay, Amit .
MATERIALS TODAY, 2013, 16 (12) :496-504
[6]   Recent advances in bone tissue engineering scaffolds [J].
Bose, Susmita ;
Roy, Mangal ;
Bandyopadhyay, Amit .
TRENDS IN BIOTECHNOLOGY, 2012, 30 (10) :546-554
[7]   The use of autologous enriched bone marrow MSCs to enhance osteoporotic bone defect repair in long-term estrogen deficient goats [J].
Cao, Lei ;
Liu, Guangwang ;
Gan, Yaokai ;
Fan, Qiming ;
Yang, Fei ;
Zhang, Xiaoling ;
Tang, Tingting ;
Dai, Kerong .
BIOMATERIALS, 2012, 33 (20) :5076-5084
[8]   OSSEOINTEGRATION OF TITANIUM IMPLANTS [J].
CARLSSON, L ;
ROSTLUND, T ;
ALBREKTSSON, B ;
ALBREKTSSON, T ;
BRANEMARK, PI .
ACTA ORTHOPAEDICA SCANDINAVICA, 1986, 57 (04) :285-289
[9]   BONE COMPRESSIVE STRENGTH - INFLUENCE OF DENSITY AND STRAIN RATE [J].
CARTER, DR ;
HAYES, WC .
SCIENCE, 1976, 194 (4270) :1174-1176
[10]   Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets [J].
Chieng, Buong Woei ;
Ibrahim, Nor Azowa ;
Yunus, Wan Md Zin Wan ;
Hussein, Mohd Zobir .
POLYMERS, 2014, 6 (01) :93-104