Deep Learning Method for Automated Classification of Anteroposterior and Posteroanterior Chest Radiographs

被引:34
作者
Kim, Tae Kyung [1 ,2 ]
Yi, Paul H. [1 ,2 ]
Wei, Jinchi [2 ]
Shin, Ji Won [2 ]
Hager, Gregory [2 ]
Hui, Ferdinand K. [1 ,2 ]
Sair, Haris I. [1 ,2 ]
Lin, Cheng Ting [1 ,2 ]
机构
[1] Johns Hopkins Univ, Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Whiting Sch Engn, RAIL, Malone Ctr Engn Healthcare, Baltimore, MD 21218 USA
关键词
Deep learning; Deep convoluted neural networks; Artificial intelligence; PACS; CONVOLUTIONAL NEURAL-NETWORKS; ARTIFICIAL-INTELLIGENCE;
D O I
10.1007/s10278-019-00208-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Ensuring correct radiograph view labeling is important for machine learning algorithm development and quality control of studies obtained from multiple facilities. The purpose of this study was to develop and test the performance of a deep convolutional neural network (DCNN) for the automated classification of frontal chest radiographs (CXRs) into anteroposterior (AP) or posteroanterior (PA) views. We obtained 112,120 CXRs from the NIH ChestX-ray14 database, a publicly available CXR database performed in adult (106,179 (95%)) and pediatric (5941 (5%)) patients consisting of 44,810 (40%) AP and 67,310 (60%) PA views. CXRs were used to train, validate, and test the ResNet-18 DCNN for classification of radiographs into anteroposterior and posteroanterior views. A second DCNN was developed in the same manner using only the pediatric CXRs (2885 (49%) AP and 3056 (51%) PA). Receiver operating characteristic (ROC) curves with area under the curve (AUC) and standard diagnostic measures were used to evaluate the DCNN's performance on the test dataset. The DCNNs trained on the entire CXR dataset and pediatric CXR dataset had AUCs of 1.0 and 0.997, respectively, and accuracy of 99.6% and 98%, respectively, for distinguishing between AP and PA CXR. Sensitivity and specificity were 99.6% and 99.5%, respectively, for the DCNN trained on the entire dataset and 98% for both sensitivity and specificity for the DCNN trained on the pediatric dataset. The observed difference in performance between the two algorithms was not statistically significant (p = 0.17). Our DCNNs have high accuracy for classifying AP/PA orientation of frontal CXRs, with only slight reduction in performance when the training dataset was reduced by 95%. Rapid classification of CXRs by the DCNN can facilitate annotation of large image datasets for machine learning and quality assurance purposes.
引用
收藏
页码:925 / 930
页数:6
相关论文
共 19 条
[1]  
Aakre Kenneth T, 2006, J Am Coll Radiol, V3, P949, DOI 10.1016/j.jacr.2006.07.005
[2]   Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images [J].
Cheng, Phillip M. ;
Malhi, Harshawn S. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (02) :234-243
[3]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[4]  
Goodman L.R., 2014, Felsons Principles of Chest Roentgenology: Expert Consult
[5]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[6]   Two public chest X-ray datasets for computer-aided screening of pulmonary diseases [J].
Jaeger, Stefan ;
Candemir, Sema ;
Antani, Sameer ;
Wang, Yi-Xiang J. ;
Lu, Pu-Xuan ;
Thoma, George .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2014, 4 (06) :475-477
[7]   Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks [J].
Kim, D. H. ;
MacKinnon, T. .
CLINICAL RADIOLOGY, 2018, 73 (05) :439-445
[8]   Deep Convolutional Neural Networks for Endotracheal Tube Position and X-ray Image Classification: Challenges and Opportunities [J].
Lakhani, Paras .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :460-468
[9]   Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks [J].
Lakhani, Paras ;
Sundaram, Baskaran .
RADIOLOGY, 2017, 284 (02) :574-582
[10]   Performance of a Deep-Learning Neural Network Model in Assessing Skeletal Maturity on Pediatric Hand Radiographs [J].
Larson, David B. ;
Chen, Matthew C. ;
Lungren, Matthew P. ;
Halabi, Safwan S. ;
Stence, Nicholas V. ;
Langlotz, Curtis P. .
RADIOLOGY, 2018, 287 (01) :313-322