A note on Lagrange interpolation for |x|λ at equidistant nodes

被引:1
作者
Ganzburg, MI [1 ]
Revers, M
机构
[1] Hampton Univ, Dept Math, Hampton, VA 23668 USA
[2] Salzburg Univ, Dept Math, A-5020 Salzburg, Austria
关键词
D O I
10.1017/S0004972700034729
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we discuss the exceptional set E subset of or equal to [-1,1] of points x(0) satisfying the inequality lim(n-->infinity)inf n(-1) log\\x\(lambda)-L-n(f(lambda), x(0))\ <(1)/(2) [(1+x(0))log(1-x(0))+(1-x(0))log(1-x(0))], where lambda > 0, lambda not equal 2, 4,... and L-n(f(lambda),.) is the Lagrange interpolation polynomial of degree at most n to f(lambda)(x) := \x\(lambda) on the interval [-1, 1] associated with the equidistant nodes. It is known that E has Lebesgue measure zero. Here we show that E contains infinite families of rational and irrational numbers.
引用
收藏
页码:475 / 480
页数:6
相关论文
共 10 条
[1]  
Bernstein S., 1918, Math. Ann, V79, P1, DOI [10.1007/BF01457173, DOI 10.1007/BF01457173]
[2]  
BERNSTEIN SN, 1916, ZAP KHARKOV MAT OBVA, V15, P49
[3]   ON LAGRANGE INTERPOLATION WITH EQUIDISTANT NODES [J].
BYRNE, GJ ;
MILLS, TM ;
SMITH, SJ .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1990, 42 (01) :81-89
[4]  
Fel'dman N. I., 1981, APPROXIMATIONS ALGEB
[5]   Strong asymptotics in Lagrange interpolation with equidistant nodes [J].
Ganzburg, MI .
JOURNAL OF APPROXIMATION THEORY, 2003, 122 (02) :224-240
[6]   ON THE DIVERGENCE OF LAGRANGE INTERPOLATION WITH EQUIDISTANT NODES [J].
LI, X ;
MOHAPATRA, RN .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (04) :1205-1212
[7]  
Natanson I. P., 1965, Interpolation and Approximation Quadratures, V3
[8]  
REEVES M, 2002, ADV PROBLEMS CONSTRU, P153
[9]   On the zero-divergence of equidistant Lagrange interpolation [J].
Revers, M .
MONATSHEFTE FUR MATHEMATIK, 2000, 131 (03) :215-221
[10]   On Lagrange interpolation with equally spaced nodes [J].
Revers, M .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 62 (03) :357-368