Second Hankel determinant for a class of analytic functions defined by q-derivative operator

被引:4
作者
Raducanu, Dorina [1 ]
机构
[1] Transilvania Univ Brasov, Fac Math & Comp Sci, Bdul Iuliu Maniu 50, Brasov 500091, Romania
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2019年 / 27卷 / 02期
关键词
analytic functions; q-derivative; subordination; Hankel determinant; COEFFICIENTS; STARLIKE; INVERSE; BOUNDS;
D O I
10.2478/auom-2019-0026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain the estimates for the second Hankel determinant for a class of analytic functions defined by q-derivative operator and subordinate to an analytic function.
引用
收藏
页码:167 / 177
页数:11
相关论文
共 33 条
[1]   On the Second Hankel Determinant for the kth-Root Transform of Analytic Functions [J].
Alarifi, Najla M. ;
Ali, Rosihan M. ;
Ravichandran, V. .
FILOMAT, 2017, 31 (02) :227-245
[2]  
Ali RM, 2009, B IRAN MATH SOC, V35, P119
[3]  
Aral A., 2013, Applications of q-Calculus in Operator Theory
[4]   Second Hankel determinant for certain subclasses of bi-univalent functions [J].
Caglar, Murat ;
Deniz, Erhan ;
Srivastava, Hari Mohan .
TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (03) :694-706
[5]   A general approach to the Fekete-Szego problem [J].
Choi, Jae Ho ;
Kim, Yong Chan ;
Sugawa, Toshiyuki .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2007, 59 (03) :707-727
[6]   SECOND HANKEL DETERMINAT FOR CERTAIN ANALYTIC FUNCTIONS SATISFYING SUBORDINATE CONDITION [J].
Deniz, Erhan ;
Budak, Levent .
MATHEMATICA SLOVACA, 2018, 68 (02) :463-471
[7]  
Duren P.L., 1983, UNIVALENT FUNCTIONS, V259
[8]  
Fekete M., 1933, J. Lond. Math. Soc., V2, P85, DOI DOI 10.1112/JLMS/S1-8.2.85
[9]   On a class of analytic functions related to conic domains involving q-calculus [J].
Govindaraj, M. ;
Sivasubramanian, S. .
ANALYSIS MATHEMATICA, 2017, 43 (03) :475-487
[10]  
HAYMAN WK, 1968, P LOND MATH SOC, V18, P77