Efficient Solution Method Based on Inverse Dynamics of Optimal Control Problems for Fixed-Based Rigid-Body Systems

被引:4
作者
Katayama, S. [1 ]
Ohtsuka, T. [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Dept Syst Sci, Sakyo Ku, Kyoto 6068501, Japan
关键词
Nonlinear Control; Optimal Control; Robotics; MODEL-PREDICTIVE CONTROL; TRAJECTORY OPTIMIZATION;
D O I
10.1016/j.ifacol.2020.12.1794
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose an efficient solution method of finite horizon optimal control problems (FHOCPs) for fixed-based rigid-body systems based on inverse dynamics. Our method can reduce the computational cost compared with the conventional FHOCP based on forward dynamics. We reformulate the FHOCP for the rigid-body systems by utilizing the generalized acceleration as the decision variables and inverse dynamics as the equality constraint. We derive the necessary conditions of the optimal control, namely, the optimality conditions, and formulate a two-point boundary-value problem that can be solved efficiently by using the recursive Newton Euler algorithm (RNEA) and the partial derivatives of RNEA. The results of the several numerical experiments on nonlinear model predictive control using the proposed formulation demonstrate the effectiveness of our approach. Copyright (C) 2020 The Authors.
引用
收藏
页码:6483 / 6489
页数:7
相关论文
共 24 条
[1]  
Bock H. G., 1985, IFAC Proceedings, V17, P1603
[2]  
Carpentier J, 2018, ROBOTICS: SCIENCE AND SYSTEMS XIV
[3]  
Carpentier J, 2019, IEEE/SICE I S SYS IN, P614, DOI 10.1109/SII.2019.8700380
[4]  
Diehl M, 2006, LECT NOTES CONTR INF, V340, P65
[5]   A real-time iteration scheme for nonlinear optimization in optimal feedback control [J].
Diehl, M ;
Bock, HG ;
Schlöder, JP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 43 (05) :1714-1736
[6]  
Erez T, 2012, IEEE INT C INT ROBOT, P4914, DOI 10.1109/IROS.2012.6386181
[7]   THE CALCULATION OF ROBOT DYNAMICS USING ARTICULATED-BODY INERTIAS [J].
FEATHERSTONE, R .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1983, 2 (01) :13-30
[8]  
Featherstone R., 2008, RIGID BODY DYNAMICS
[9]   qpOASES: a parametric active-set algorithm for quadratic programming [J].
Ferreau, Hans Joachim ;
Kirches, Christian ;
Potschka, Andreas ;
Bock, Hans Georg ;
Diehl, Moritz .
MATHEMATICAL PROGRAMMING COMPUTATION, 2014, 6 (04) :327-363
[10]   A parallel quadratic programming method for dynamic optimization problems [J].
Frasch, Janick V. ;
Sager, Sebastian ;
Diehl, Moritz .
MATHEMATICAL PROGRAMMING COMPUTATION, 2015, 7 (03) :289-329