Optimality and uniqueness of the Leech lattice among lattices

被引:68
作者
Cohn, Henry [1 ]
Kumar, Abhinav [2 ]
机构
[1] Microsoft Res, Redmond, WA 98052 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
POSITIVE QUADRATIC-FORMS; BOUNDS; SPHERE; CODES;
D O I
10.4007/annals.2009.170.1003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Leech lattice is the unique densest lattice in R-24. The proof combines human reasoning with computer verification of the properties of certain explicit polynomials. We furthermore prove that no sphere packing in R-24 can exceed the Leech lattice's density by a factor of more than 1 + 1.65 . 10(-30), and we give a new proof that E-8 is the unique densest lattice in R-8.
引用
收藏
页码:1003 / 1050
页数:48
相关论文
共 31 条
[1]  
[Anonymous], 2002, LONDON MATH SOC MONO
[2]  
[Anonymous], 1877, Math. Ann., DOI DOI 10.1007/BF01442667
[3]  
[Anonymous], 1999, ENCY MATH APPL
[4]   UNIQUENESS OF CERTAIN SPHERICAL CODES [J].
BANNAI, E ;
SLOANE, NJA .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1981, 33 (02) :437-449
[6]   The minimum values of positive quadratic forms in six, seven and eight variables [J].
Blichfeldt, HF .
MATHEMATISCHE ZEITSCHRIFT, 1935, 39 :1-15
[7]  
BROUWER AE, 1995, HDB COMBINATORICS, V1, P747
[8]  
CHAUNDY TW, 1946, Q J MATH, V17, P166, DOI [10.1093/qmath/os-17.1.166, DOI 10.1093/QMATH/OS-17.1.166]
[9]   New upper bounds on sphere packings I [J].
Cohn, H ;
Elkies, N .
ANNALS OF MATHEMATICS, 2003, 157 (02) :689-714
[10]   New upper bounds on sphere packings II [J].
Cohn, Henry .
GEOMETRY & TOPOLOGY, 2002, 6 :329-353