Inverse optimal controller for nonlinear systems with convex input constraints

被引:1
作者
Satoh, Yasuyuki [1 ]
Nakamura, Hisakazu [2 ]
Ohtsuka, Toshiyuki [1 ]
机构
[1] Kyoto Univ, Sakyo Ku, Yoshida Honnachi, Kyoto 6068531, Japan
[2] Tokyo Univ Sci, Noda, Chiba 2788510, Japan
关键词
nonlinear control; control Lyapunov function (CLF); inverse optimality; convex input constraint; convex optimization; GLOBAL CLF STABILIZATION;
D O I
10.1016/j.ifacol.2016.10.254
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose an inverse optimal controller design method for nonlinear systems with convex input constraints. The proposed design method constructs a state feedback controller as an optimal solution of a parametric convex optimization problem. The necessary and sufficient condition for inverse optimality is given by the Karush-Kuhn-Tucker (KKT) condition. We also show that the Lagrange multiplier for the optimization problem characterizes the asymptotically stabilizable domain and the robustness of the proposed controller. The effectiveness of the proposed method is confirmed by computer simulation.
引用
收藏
页码:742 / 747
页数:6
相关论文
共 24 条
[21]   GLOBAL CLF STABILIZATION OF NONLINEAR SYSTEMS. PART I: A GEOMETRIC APPROACH-COMPACT STRICTLY CONVEX CVS [J].
Solis-Daun, Julio .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (03) :2152-2175
[22]  
Sontag E., 1998, OPEN PROBLEMS MATH S, P211
[23]  
Suárez R, 2001, IEEE DECIS CONTR P, P3838, DOI 10.1109/CDC.2001.980463
[24]   On LICQ and the uniqueness of Lagrange multipliers [J].
Wachsmuth, Gerd .
OPERATIONS RESEARCH LETTERS, 2013, 41 (01) :78-80