Inverse optimal controller for nonlinear systems with convex input constraints

被引:1
作者
Satoh, Yasuyuki [1 ]
Nakamura, Hisakazu [2 ]
Ohtsuka, Toshiyuki [1 ]
机构
[1] Kyoto Univ, Sakyo Ku, Yoshida Honnachi, Kyoto 6068531, Japan
[2] Tokyo Univ Sci, Noda, Chiba 2788510, Japan
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 18期
关键词
nonlinear control; control Lyapunov function (CLF); inverse optimality; convex input constraint; convex optimization; GLOBAL CLF STABILIZATION;
D O I
10.1016/j.ifacol.2016.10.254
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose an inverse optimal controller design method for nonlinear systems with convex input constraints. The proposed design method constructs a state feedback controller as an optimal solution of a parametric convex optimization problem. The necessary and sufficient condition for inverse optimality is given by the Karush-Kuhn-Tucker (KKT) condition. We also show that the Lagrange multiplier for the optimization problem characterizes the asymptotically stabilizable domain and the robustness of the proposed controller. The effectiveness of the proposed method is confirmed by computer simulation.
引用
收藏
页码:742 / 747
页数:6
相关论文
共 24 条
[1]  
[Anonymous], 2018, Applied optimal control: optimization, estimation and control
[2]  
[Anonymous], 2011, Constructive Nonlinear Control
[3]  
Berge C., 1963, Topological Spaces, Including a Treatment of Multi -Valued Functions Vector Spaces and Convexity
[4]  
Boyd S, 2004, CONVEX OPTIMIZATION
[5]   Satisficing: A new approach to constructive nonlinear control [J].
Curtis, JW ;
Beard, RW .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (07) :1090-1102
[6]  
Freeman R. A., 1996, Robust Nonlinear Control Design
[7]  
Haddad W. M., 1996, NONLINEAR DYNAMICAL
[8]   POINT-TO-SET MAPS IN MATHEMATICAL PROGRAMMING [J].
HOGAN, WW .
SIAM REVIEW, 1973, 15 (03) :591-603
[9]  
Kidane N., 2005, P 16 IFAC WORLD C, V780
[10]  
Kidane N., 2005, P 16 IFAC WORLD C, V779