High loop rate adaptive optics flood illumination ophthalmoscope with structured illumination capability

被引:23
作者
Gofas-Salas, Elena [1 ,2 ,6 ]
Mece, Pedro [1 ,3 ,6 ]
Petit, Cyril [1 ,6 ]
Jarosz, Jessica [1 ,3 ]
Mugnier, Laurent M. [1 ]
Bonnefois, Aurelie Montmerle [1 ]
Grieve, Kate [2 ,4 ,6 ]
Sahel, Jose [2 ,4 ,5 ]
Paques, Michel [2 ,4 ,6 ]
Meimon, Serge [1 ,6 ]
机构
[1] Univ Paris Saclay, ONERA, DOTA, F-91123 Palaiseau, France
[2] UPMC Univ Paris 06, Sorbonne Univ, Inst Vis, INSERM,CNRS, 17 Rue Moreau, F-75012 Paris, France
[3] Quantel Med, Cournon Dauvergne, France
[4] Quinze Vingts Hosp, INSERM, CIC 1423, Paris, France
[5] Univ Pittsburgh, Sch Med, Dept Ophthalmol, Pittsburgh, PA 15213 USA
[6] PARIS Grp Paris Adapt Opt Retinal Imaging & Surg, Paris, France
基金
欧盟地平线“2020”;
关键词
RETINAL IMAGES; RESOLUTION; REGISTRATION; LIGHT; EYE;
D O I
10.1364/AO.57.005635
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The design and performance of an adaptive optics flood illumination ophthalmoscope (AO-FIO) platform, based on eye motion and dynamic aberrations experimental analysis, are described. The system incorporates a custom-built real-time controller, enabling up to 70 Hz loop rate without jitter, and an AO-corrected illumination capable of projecting high-resolution features in the retina. Wide-field (2.7 degrees x 5.4 degrees) and distortionless images from vessel walls, capillaries, and the lamina cribrosa are obtained with an enhanced contrast and signal-to-noise ratio, thanks to careful control of AO parameters. The high spatial and temporal resolution (image acquisition up to 200 Hz) performance achieved by this platform enables the visualization of vessel deformation and blood flow. This system opens up the prospect of a return to favor of flood illumination adaptive optics systems provided that its high pixel rate and structured illumination capabilities are exploited. (C) 2018 Optical Society of America
引用
收藏
页码:5635 / 5642
页数:8
相关论文
共 26 条
  • [11] Supernormal vision and high-resolution retinal imaging through adaptive optics
    Liang, JZ
    Williams, DR
    Miller, DT
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1997, 14 (11) : 2884 - 2892
  • [12] High-speed adaptive optics line scan confocal retinal imaging for human eye
    Lu, Jing
    Gu, Boyu
    Wang, Xiaolin
    Zhang, Yuhua
    [J]. PLOS ONE, 2017, 12 (03):
  • [13] Mece P., 2018, BIOMED OPT EXPRESS
  • [14] Fixational eye movement: a negligible source of dynamic aberration
    Mece, Pedro
    Jarosz, Jessica
    Conan, Jean-Marc
    Petit, Cyril
    Grieve, Kate
    Paques, Michel
    Meimon, Serge
    [J]. BIOMEDICAL OPTICS EXPRESS, 2018, 9 (02): : 718 - 727
  • [15] Pupil motion analysis and tracking in ophthalmic systems equipped with wavefront sensing technology
    Meimon, Serge
    Jarosz, Jessica
    Petit, Cyril
    Salas, Elena Gofas
    Grieve, Kate
    Conan, Jean-Marc
    Emica, Bruno
    Paques, Michel
    Irsch, Kristina
    [J]. APPLIED OPTICS, 2017, 56 (09) : D66 - D71
  • [16] Minsky M., 1961, US patent, Patent No. [3013467, 3,013,467A]
  • [17] Method of obtaining optical sectioning by using structured light in a conventional microscope
    Neil, MAA
    Juskaitis, R
    Wilson, T
    [J]. OPTICS LETTERS, 1997, 22 (24) : 1905 - 1907
  • [18] Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images
    Ramaswamy, Gomathy
    Lombardo, Marco
    Devaney, Nicholas
    [J]. BIOMEDICAL OPTICS EXPRESS, 2014, 5 (06): : 1941 - 1951
  • [19] Pre-processing, registration and selection of adaptive optics corrected retinal images
    Ramaswamy, Gomathy
    Devaney, Nicholas
    [J]. OPHTHALMIC AND PHYSIOLOGICAL OPTICS, 2013, 33 (04) : 527 - 539
  • [20] Roddier F., 1999, Adaptive Optics in Astronomy