High loop rate adaptive optics flood illumination ophthalmoscope with structured illumination capability

被引:24
作者
Gofas-Salas, Elena [1 ,2 ,6 ]
Mece, Pedro [1 ,3 ,6 ]
Petit, Cyril [1 ,6 ]
Jarosz, Jessica [1 ,3 ]
Mugnier, Laurent M. [1 ]
Bonnefois, Aurelie Montmerle [1 ]
Grieve, Kate [2 ,4 ,6 ]
Sahel, Jose [2 ,4 ,5 ]
Paques, Michel [2 ,4 ,6 ]
Meimon, Serge [1 ,6 ]
机构
[1] Univ Paris Saclay, ONERA, DOTA, F-91123 Palaiseau, France
[2] UPMC Univ Paris 06, Sorbonne Univ, Inst Vis, INSERM,CNRS, 17 Rue Moreau, F-75012 Paris, France
[3] Quantel Med, Cournon Dauvergne, France
[4] Quinze Vingts Hosp, INSERM, CIC 1423, Paris, France
[5] Univ Pittsburgh, Sch Med, Dept Ophthalmol, Pittsburgh, PA 15213 USA
[6] PARIS Grp Paris Adapt Opt Retinal Imaging & Surg, Paris, France
基金
欧盟地平线“2020”;
关键词
RETINAL IMAGES; RESOLUTION; REGISTRATION; LIGHT; EYE;
D O I
10.1364/AO.57.005635
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The design and performance of an adaptive optics flood illumination ophthalmoscope (AO-FIO) platform, based on eye motion and dynamic aberrations experimental analysis, are described. The system incorporates a custom-built real-time controller, enabling up to 70 Hz loop rate without jitter, and an AO-corrected illumination capable of projecting high-resolution features in the retina. Wide-field (2.7 degrees x 5.4 degrees) and distortionless images from vessel walls, capillaries, and the lamina cribrosa are obtained with an enhanced contrast and signal-to-noise ratio, thanks to careful control of AO parameters. The high spatial and temporal resolution (image acquisition up to 200 Hz) performance achieved by this platform enables the visualization of vessel deformation and blood flow. This system opens up the prospect of a return to favor of flood illumination adaptive optics systems provided that its high pixel rate and structured illumination capabilities are exploited. (C) 2018 Optical Society of America
引用
收藏
页码:5635 / 5642
页数:8
相关论文
共 26 条
[1]   Direct visualization and characterization of erythrocyte flow in human retinal capillaries [J].
Bedggood, Phillip ;
Metha, Andrew .
BIOMEDICAL OPTICS EXPRESS, 2012, 3 (12) :3264-3277
[2]   Marginal blind deconvolution of adaptive optics retinal images [J].
Blanco, L. ;
Mugnier, L. M. .
OPTICS EXPRESS, 2011, 19 (23) :23227-23239
[3]   Automatic detection of modal spacing (Yellott's ring) in adaptive optics scanning light ophthalmoscope images [J].
Cooper, Robert F. ;
Langlo, Christopher S. ;
Dubra, Alfredo ;
Carroll, Joseph .
OPHTHALMIC AND PHYSIOLOGICAL OPTICS, 2013, 33 (04) :540-549
[4]   Reactivity in the human retinal microvasculature measured during acute gas breathing provocations [J].
Duan, Angelina ;
Bedggood, Phillip A. ;
Metha, Andrew B. ;
Bui, Bang V. .
SCIENTIFIC REPORTS, 2017, 7
[5]   Evidence of Flicker-Induced Functional Hyperaemia in the Smallest Vessels of the Human Retinal Blood Supply [J].
Duan, Angelina ;
Bedggood, Phillip A. ;
Bui, Bang V. ;
Metha, Andrew B. .
PLOS ONE, 2016, 11 (09)
[6]   Sub-pixel image registration with a maximum likelihood estimator -: Application to the first adaptive optics observations of Arp 220 in the L′ band [J].
Gratadour, D ;
Mugnier, LM ;
Rouan, D .
ASTRONOMY & ASTROPHYSICS, 2005, 443 (01) :357-365
[7]  
Gruppetta S., 2013, FRONTIERS IN OPTICS
[8]   Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy [J].
Gustafsson, MGL .
JOURNAL OF MICROSCOPY, 2000, 198 (02) :82-87
[9]   High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget [J].
Jarosz, Jessica ;
Mece, Pedro ;
Conan, Jean-Marc ;
Petit, Cyril ;
Paques, Michel ;
Meimon, Serge .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (04) :2088-2105
[10]   Retinal imaging with adaptive optics [J].
Le Gargasson, JF ;
Glanc, M ;
Léna, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE IV PHYSIQUE ASTROPHYSIQUE, 2001, 2 (08) :1131-1138