Chlamydomonas Basal Bodies as Flagella Organizing Centers

被引:21
|
作者
Wingfield, Jenna Lynne [1 ]
Lechtreck, Karl-Ferdinand [1 ]
机构
[1] Univ Georgia, Dept Cellular Biol, Athens, GA 30602 USA
基金
美国国家卫生研究院;
关键词
bld2; bld10; bld12; centrin; striated fiber assemblin (SFA); intraflagellar transport (IFT); axoneme; central pair; microtubules; centriole; MICROTUBULE-ASSOCIATED FIBERS; INTRAFLAGELLAR TRANSPORT IFT; ALGA DUNALIELLA-BIOCULATA; LIGHT INTERMEDIATE CHAIN; STRIATED FIBER; SF-ASSEMBLIN; SPERMATOZOPSIS-SIMILIS; PROTEOMIC ANALYSIS; 9-FOLD SYMMETRY; DELTA-TUBULIN;
D O I
10.3390/cells7070079
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
During ciliogenesis, centrioles convert to membrane-docked basal bodies, which initiate the formation of cilia/flagella and template the nine doublet microtubules of the flagellar axoneme. The discovery that many human diseases and developmental disorders result from defects in flagella has fueled a strong interest in the analysis of flagellar assembly. Here, we will review the structure, function, and development of basal bodies in the unicellular green alga Chlamydomonas reinhardtii, a widely used model for the analysis of basal bodies and flagella. Intraflagellar transport (IFT), a flagella-specific protein shuttle critical for ciliogenesis, was first described in C. reinhardtii. A focus of this review will be on the role of the basal bodies in organizing the IFT machinery.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Chlamydomonas as a model system to study cilia and flagella using genetics, biochemistry, and microscopy
    Marshall, Wallace F.
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2024, 12
  • [2] In vivo Imaging of IFT in Chlamydomonas Flagella
    Lechtreck, Karl F.
    CILIA, PT A, 2013, 524 : 265 - 284
  • [3] Protein Methylation in Full Length Chlamydomonas Flagella
    Sloboda, Roger D.
    Howard, Louisa
    CELL MOTILITY AND THE CYTOSKELETON, 2009, 66 (08): : 650 - 660
  • [4] Katanin Knockdown Supports a Role for Microtubule Severing in Release of Basal Bodies before Mitosis in Chlamydomonas
    Rasi, M. Qasim
    Parker, Jeremy D. K.
    Feldman, Jessica L.
    Marshall, Wallace F.
    Quarmby, Lynne M.
    MOLECULAR BIOLOGY OF THE CELL, 2009, 20 (01) : 379 - 388
  • [5] Radial spoke proteins of Chlamydomonas flagella
    Yang, PF
    Diener, DR
    Yang, C
    Kohno, T
    Pazour, GJ
    Dienes, JM
    Agrin, NS
    King, SM
    Sale, WS
    Kamiya, R
    Rosenbaum, JL
    Witman, GB
    JOURNAL OF CELL SCIENCE, 2006, 119 (06) : 1165 - 1174
  • [6] Total Internal Reflection Fluorescence (TIRF) Microscopy of Chlamydomonas Flagella
    Engel, Benjamin D.
    Lechtreck, Karl-Ferdinand
    Sakai, Tsuyoshi
    Ikebe, Mitsuo
    Witman, George B.
    Marshall, Wallace F.
    CILIA: MODEL ORGANISMS AND INTRAFLAGELLAR TRANSPORT, 2009, 93 : 157 - +
  • [7] Ability of paralyzed flagella mutants of Chlamydomonas to move
    Omoto, CK
    Yagi, T
    Kurimoto, E
    Kamiya, R
    CELL MOTILITY AND THE CYTOSKELETON, 1996, 33 (02): : 88 - 94
  • [8] Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella
    Sartori, Pablo
    Geyer, Veikko F.
    Scholich, Andre
    Juelicher, Frank
    Howard, Jonathon
    ELIFE, 2016, 5
  • [9] CDKL5 regulates flagellar length and localizes to the base of the flagella in Chlamydomonas
    Tam, Lai-Wa
    Ranum, Paul T.
    Lefebvre, Paul A.
    MOLECULAR BIOLOGY OF THE CELL, 2013, 24 (05) : 588 - 600
  • [10] The distal central pair segment is structurally specialised and contributes to IFT turnaround and assembly of the tip capping structures in Chlamydomonas flagella
    Pratelli, Ambra
    Corbo, Dalia
    Lupetti, Pietro
    Mencarelli, Caterina
    BIOLOGY OF THE CELL, 2022, 114 (12) : 349 - 364