Discrete constant mean curvature nets in space forms: Steiner's formula and Christoffel duality

被引:7
作者
Bobenko, Alexander I. [1 ]
Hertrich-Jeromin, Udo [2 ]
Lukyanenko, Inna [3 ]
机构
[1] Tech Univ Berlin, Dept Math, D-10623 Berlin, Germany
[2] Tech Univ Wien, A-1040 Vienna, Austria
[3] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
关键词
Konigs dual; Christoffel transformation; Discrete conjugate net; Space form; Constant mean curvature; Mixed area; ISOTHERMAL SURFACES; MINIMAL-SURFACES;
D O I
10.1007/s00454-014-9622-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that the discrete principal nets in quadrics of constant curvature that have constant mixed area mean curvature can be characterized by the existence of a Konigs dual in a concentric quadric.
引用
收藏
页码:612 / 629
页数:18
相关论文
共 15 条
[1]  
[Anonymous], 1993, Experiment. Math., DOI [10.1080/10586458.1993.10504266, DOI 10.1080/10586458.1993.10504266]
[2]  
Bobenko A, 1996, J REINE ANGEW MATH, V475, P187
[3]  
Bobenko AI, 1999, OXF LEC S MATH APPL, V16, P3
[4]  
BOBENKO AI, 2008, INTEGRABLE STRUCTURE
[5]   Minimal surfaces from circle patterns: Geometry from combinatorics [J].
Bobenko, Alexander I. ;
Hoffmann, Tim ;
Springborn, Boris A. .
ANNALS OF MATHEMATICS, 2006, 164 (01) :231-264
[6]   A curvature theory for discrete surfaces based on mesh parallelity [J].
Bobenko, Alexander I. ;
Pottmann, Helmut ;
Wallner, Johannes .
MATHEMATISCHE ANNALEN, 2010, 348 (01) :1-24
[7]  
Burstall F., 2014, ARXIV14061293
[8]  
Burstall F.E., 2014, Development in Differential Geometry of Submanifolds, V1880, P133
[9]  
GrosseBrauckmann K, 1996, ELLIPTIC AND PARABOLIC METHODS IN GEOMETRY, P23
[10]  
Hertrich-Jeromin U, 1999, OXF LEC S MATH APPL, V16, P59