On class number formula for the real quadratic fields

被引:0
作者
Sato, H [1 ]
机构
[1] Sci Univ Tokyo, Dept Math, Grad Sch Sci, Shinjuku Ku, Tokyo 1628601, Japan
关键词
class number; real quadratic fields;
D O I
10.3792/pjaa.80.129
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k > 1 be the fundamental discriminant, and let chi(n), epsilon and h be the real primitive character modulo k, the fundamental unit and the class number of the real quadratic field Q(rootk), respectively. And let [x] denote the greatest integer not greater than x. In [3], M.-G. Leu showed h=[rootk/(2logepsilon) Sigma(n=1)(k) chi(n)/n]+1 for all k, and h= [rootk/(2logepsilon) Sigma(n=1)([k/2]) chi(n)/n] in the case knot equalm(2)+4 with m is an element of Z.
引用
收藏
页码:129 / 130
页数:2
相关论文
共 3 条
[1]  
Apostol TM., 1998, INTRO ANAL NUMBER TH
[2]  
Cohn H., 1980, Advanced Number Theory, Vfirst
[3]   On L(1,chi) and class number formula for the real quadratic fields [J].
Leu, MG .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1996, 72 (03) :69-74