Predictive Modeling of Microbiome Data Using a Phylogeny-Regularized Generalized Linear Mixed Model

被引:33
作者
Xiao, Jian [1 ,2 ,3 ]
Chen, Li [4 ]
Johnson, Stephen [1 ,2 ]
Yu, Yue [1 ,2 ]
Zhang, Xianyang [5 ]
Chen, Jun [1 ,2 ]
机构
[1] Mayo Clin, Div Biomed Stat & Informat, Rochester, MN 55905 USA
[2] Mayo Clin, Ctr Individualized Med, Rochester, MN 55905 USA
[3] Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan, Hubei, Peoples R China
[4] Auburn Univ, Harrison Sch Pharm, Dept Hlth Outcomes Res & Policy, Auburn, AL 36849 USA
[5] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
来源
FRONTIERS IN MICROBIOLOGY | 2018年 / 9卷
基金
中国国家自然科学基金;
关键词
microbiome; phylogenetic tree; kernel method; generalized mixed model; predictive model; HUMAN GUT MICROBIOME; VARIABLE SELECTION; REGRESSION; CLASSIFICATION; INDIVIDUALS; ASSOCIATION; INFERENCE; UNIFRAC; HEALTH; MATRIX;
D O I
10.3389/fmicb.2018.01391
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Recent human microbiome studies have revealed an essential role of the human microbiome in health and disease, opening up the possibility of building microbiome-based predictive models for individualized medicine. One unique characteristic of microbiome data is the existence of a phylogenetic tree that relates all the microbial species. It has frequently been observed that a cluster or clusters of bacteria at varying phylogenetic depths are associated with some clinical or biological outcome due to shared biological function (clustered signal). Moreover, in many cases, we observe a community-level change, where a large number of functionally interdependent species are associated with the outcome (dense signal). We thus develop "glmmTree," a prediction method based on a generalized linear mixed model framework, for capturing clustered and dense microbiome signals. glmmTree uses the similarity between microbiomes, which is defined based on the microbiome composition and the phylogenetic tree, to predict the outcome. The effects of other predictive variables (e.g., age, sex) can be incorporated readily in the regression framework. Additional tuning parameters enable a data-adaptive approach to capture signals at different phylogenetic depth and abundance level. Simulation studies and real data applications demonstrated that "glmmTree" outperformed existing methods in the dense and clustered signal scenarios.
引用
收藏
页数:14
相关论文
共 68 条
  • [51] A metagenome-wide association study of gut microbiota in type 2 diabetes
    Qin, Junjie
    Li, Yingrui
    Cai, Zhiming
    Li, Shenghui
    Zhu, Jianfeng
    Zhang, Fan
    Liang, Suisha
    Zhang, Wenwei
    Guan, Yuanlin
    Shen, Dongqian
    Peng, Yangqing
    Zhang, Dongya
    Jie, Zhuye
    Wu, Wenxian
    Qin, Youwen
    Xue, Wenbin
    Li, Junhua
    Han, Lingchuan
    Lu, Donghui
    Wu, Peixian
    Dai, Yali
    Sun, Xiaojuan
    Li, Zesong
    Tang, Aifa
    Zhong, Shilong
    Li, Xiaoping
    Chen, Weineng
    Xu, Ran
    Wang, Mingbang
    Feng, Qiang
    Gong, Meihua
    Yu, Jing
    Zhang, Yanyan
    Zhang, Ming
    Hansen, Torben
    Sanchez, Gaston
    Raes, Jeroen
    Falony, Gwen
    Okuda, Shujiro
    Almeida, Mathieu
    LeChatelier, Emmanuelle
    Renault, Pierre
    Pons, Nicolas
    Batto, Jean-Michel
    Zhang, Zhaoxi
    Chen, Hua
    Yang, Ruifu
    Zheng, Weimou
    Li, Songgang
    Yang, Huanming
    [J]. NATURE, 2012, 490 (7418) : 55 - 60
  • [52] Randolph T., 2015, ARXIV151100297
  • [53] Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences
    Rideout, Jai Ram
    He, Yan
    Navas-Molina, Jose A.
    Walters, William A.
    Ursell, Luke K.
    Gibbons, Sean M.
    Chase, John
    McDonald, Daniel
    Gonzalez, Antonio
    Robbins-Pianka, Adam
    Clemente, Jose C.
    Gilbert, Jack A.
    Huse, Susan M.
    Zhou, Hong-Wei
    Knight, Rob
    Caporaso, J. Gregory
    [J]. PEERJ, 2014, 2
  • [54] Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors
    Routy, Bertrand
    Le Chatelier, Emmanuelle
    Derosa, Lisa
    Duong, Connie P. M.
    Alou, Maryam Tidjani
    Daillere, Romain
    Fluckiger, Aurelie
    Messaoudene, Meriem
    Rauber, Conrad
    Roberti, Maria P.
    Fidelle, Marine
    Flament, Caroline
    Poirier-Colame, Vichnou
    Opolon, Paule
    Klein, Christophe
    Iribarren, Kristina
    Mondragon, Laura
    Jacquelot, Nicolas
    Qu, Bo
    Ferrere, Gladys
    Clemenson, Celine
    Mezquita, Laura
    Masip, Jordi Remon
    Naltet, Charles
    Brosseau, Solenn
    Kaderbhai, Coureche
    Richard, Corentin
    Rizvi, Hira
    Levenez, Florence
    Galleron, Nathalie
    Quinquis, Benoit
    Pons, Nicolas
    Ryffel, Bernhard
    Minard-Colin, Veronique
    Gonin, Patrick
    Soria, Jean-Charles
    Deutsch, Eric
    Loriot, Yohann
    Ghiringhelli, Francois
    Zalcman, Gerard
    Goldwasser, Francois
    Escudier, Bernard
    Hellmann, Matthew D.
    Eggermont, Alexander
    Raoult, Didier
    Albiges, Laurence
    Kroemer, Guido
    Zitvogel, Laurence
    [J]. SCIENCE, 2018, 359 (6371) : 91 - +
  • [55] Fusobacterium nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via its FadA Adhesin
    Rubinstein, Mara Roxana
    Wang, Xiaowei
    Liu, Wendy
    Hao, Yujun
    Cai, Guifang
    Han, Yiping W.
    [J]. CELL HOST & MICROBE, 2013, 14 (02) : 195 - 206
  • [56] THE BOX-COX TRANSFORMATION TECHNIQUE - A REVIEW
    SAKIA, RM
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1992, 41 (02) : 169 - 178
  • [57] Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity
    Schirmer, Melanie
    Smeekens, Sanne P.
    Vlamakis, Hera
    Jaeger, Martin
    Oosting, Marije
    Franzosa, Eric A.
    ter Horst, Rob
    Jansen, Trees
    Jacobs, Liesbeth
    Bonder, Marc Jan
    Kurilshikov, Alexander
    Fu, Jingyuan
    Joosten, Leo A. B.
    Zhernakova, Alexandra
    Huttenhower, Curtis
    Wijmenga, Cisca
    Netea, Mihai G.
    Xavier, Ramnik J.
    [J]. CELL, 2016, 167 (04) : 1125 - +
  • [58] A comprehensive evaluation of multicategory classification methods for microbiomic data
    Statnikov, Alexander
    Henaff, Mikael
    Narendra, Varun
    Konganti, Kranti
    Li, Zhiguo
    Yang, Liying
    Pei, Zhiheng
    Blaser, Martin J.
    Aliferis, Constantin F.
    Alekseyenko, Alexander V.
    [J]. MICROBIOME, 2013, 1
  • [59] Phylogeny-based classification of microbial communities
    Tanaseichuk, Olga
    Borneman, James
    Jiang, Tao
    [J]. BIOINFORMATICS, 2014, 30 (04) : 449 - 456