Wolff potential estimates for Cheeger p-harmonic functions

被引:4
作者
Hara, Takanobu [1 ]
机构
[1] Hokkaido Univ, Dept Math, Kita 8 Nishi 10, Sapporo, Hokkaido 0600808, Japan
关键词
Nonlinear elliptic equations; p-Laplacian; Wolff potentials; Metric space; Doubling measure; Poincare inequality; Potential theory; ELLIPTIC-EQUATIONS; SOBOLEV SPACES; SETS;
D O I
10.1007/s13348-018-0213-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we give a new proof of Wolff potential estimates for Cheeger p-superharmonic functions on metric measure spaces given by Bjorn et al. (J Anal Math 85:339-369, 2001). Also, we extend the estimate to Poisson type equations with signed data.
引用
收藏
页码:407 / 426
页数:20
相关论文
共 27 条
[1]  
[Anonymous], 1969, Quelques methodes de resolution des problemes aux limites non lineaires
[2]  
[Anonymous], 1970, Vestnik Leningrad. Univ.
[3]  
Bjorn A, 2011, EMS TRACTS MATH, V17, P1, DOI 10.4171/099
[4]   Moser iteration for (quasi)minimizers on metric spaces [J].
Bjorn, Anders ;
Marola, Niko .
MANUSCRIPTA MATHEMATICA, 2006, 121 (03) :339-366
[5]   Fat sets and pointwise boundary estimates for p-harmonic functions in metric spaces [J].
Björn, J ;
MacManus, P ;
Shanmugalingam, N .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 85 (1) :339-369
[6]  
Bjorn J, 2006, POTENTIAL THEORY MAT, V44, P103
[7]   Differentiability of Lipschitz functions on metric measure spaces [J].
Cheeger, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) :428-517
[8]   Local Behavior of p-harmonic Green's Functions in Metric Spaces [J].
Danielli, Donatella ;
Garofalo, Nicola ;
Marola, Niko .
POTENTIAL ANALYSIS, 2010, 32 (04) :343-362
[9]   GRADIENT ESTIMATES VIA NON-LINEAR POTENTIALS [J].
Duzaar, Frank ;
Mingione, Giuseppe .
AMERICAN JOURNAL OF MATHEMATICS, 2011, 133 (04) :1093-1149
[10]  
Grafakos L., 2008, GRADUATE TEXTS MATH, V249