Partial Least Squares for Heterogeneous Data

被引:1
作者
Buhlmann, Peter [1 ]
机构
[1] ETH, Seminar Stat, Zurich, Switzerland
来源
MULTIPLE FACETS OF PARTIAL LEAST SQUARES AND RELATED METHODS | 2016年 / 173卷
关键词
Partial least square regression (PLSR); Heterogeneous data; Big data; Minimax; Maximin; REGRESSION;
D O I
10.1007/978-3-319-40643-5_1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Large-scale data, where the sample size and the dimension are high, often exhibits heterogeneity. This can arise for example in the form of unknown subgroups or clusters, batch effects or contaminated samples. Ignoring these issues would often lead to poor prediction and estimation. We advocate the maximin effects framework (Meinshausen and Buhlmann, Maximin effects in inhomogeneous large-scale data. Preprint arXiv: 1406.0596, 2014) to address the problem of heterogeneous data. In combination with partial least squares (PLS) regression, we obtain a new PLS procedure which is robust and tailored for large-scale heterogeneous data. A small empirical study complements our exposition of new PLS methodology.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 50 条
[21]   Novel Kernel Orthogonal Partial Least Squares for Dominant Sensor Data Extraction [J].
Chen, Bo-Wei .
IEEE ACCESS, 2020, 8 :36131-36139
[22]   Classification of multivariate functional data on different domains with Partial Least Squares approaches [J].
Moindjie, Issam-Ali ;
Dabo-Niang, Sophie ;
Preda, Cristian .
STATISTICS AND COMPUTING, 2024, 34 (01)
[23]   Spectral data classification using locally weighted partial least squares classifier [J].
Song, Weiran ;
Wang, Hui ;
Maguire, Paul ;
Nibouche, Omar .
DATA SCIENCE AND KNOWLEDGE ENGINEERING FOR SENSING DECISION SUPPORT, 2018, 11 :700-707
[24]   Maximum correntropy criterion partial least squares [J].
Mou, Yi ;
Zhou, Long ;
Chen, Weizhen ;
Fan, Jijun ;
Zhao, Xu .
OPTIK, 2018, 165 :137-147
[25]   AN ONLINE NIPALS ALGORITHM FOR PARTIAL LEAST SQUARES [J].
Stott, Alexander E. ;
Kanna, Sithan ;
Mandic, Danilo P. ;
Pike, William T. .
2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, :4177-4181
[26]   Powered partial least squares discriminant analysis [J].
Liland, Kristian Hovde ;
Indahl, Ulf Geir .
JOURNAL OF CHEMOMETRICS, 2009, 23 (1-2) :7-18
[27]   PLASMA: Partial LeAst Squares for Multiomics Analysis [J].
Yamaguchi, Kyoko ;
Abdelbaky, Salma ;
Yu, Lianbo ;
Oakes, Christopher C. ;
Abruzzo, Lynne V. ;
Coombes, Kevin R. .
CANCERS, 2025, 17 (02)
[28]   The diversity in the applications of partial least squares: an overview [J].
Mehmood, Tahir ;
Ahmed, Bilal .
JOURNAL OF CHEMOMETRICS, 2016, 30 (01) :4-17
[29]   CONSISTENT PARTIAL LEAST SQUARES PATH MODELING [J].
Dijkstra, Theo K. ;
Henseler, Jorg .
MIS QUARTERLY, 2015, 39 (02) :297-+
[30]   Partial least squares fusing unsupervised learning [J].
Yoo, Jae Keun .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 175 :82-86