Convergence to steady states for radially symmetric solutions to a quasilinear degenerate diffusive Hamilton-Jacobi equation

被引:10
作者
Barles, Guy [1 ]
Laurencot, Philippe [2 ]
Stinner, Christian [3 ]
机构
[1] Univ Tours, CNRS, Lab Math & Phys Theor, UMR 6083, F-37200 Tours, France
[2] Univ Toulouse, Inst Math Toulouse, CNRS, UMR 5219, F-31062 Toulouse, France
[3] Univ Duisburg Essen, Fachbereich Math, D-45117 Essen, Germany
关键词
convergence to steady state; degenerate parabolic equation; viscosity solutions; gradient source term; DIRICHLET BOUNDARY-CONDITIONS; PARABOLIC EQUATIONS; GLOBAL-SOLUTIONS; TIME BEHAVIOR;
D O I
10.3233/ASY-2010-0981
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Convergence to a single steady state is shown for non-negative and radially symmetric solutions to a diffusive Hamilton-Jacobi equation with homogeneous Dirichlet boundary conditions, the diffusion being the p-Laplacian operator, p >= 2, and the source term a power of the norm of the gradient of u. As a first step, the radially symmetric and non-increasing stationary solutions are characterized.
引用
收藏
页码:229 / 250
页数:22
相关论文
共 22 条