Convergence to steady states for radially symmetric solutions to a quasilinear degenerate diffusive Hamilton-Jacobi equation

被引:10
作者
Barles, Guy [1 ]
Laurencot, Philippe [2 ]
Stinner, Christian [3 ]
机构
[1] Univ Tours, CNRS, Lab Math & Phys Theor, UMR 6083, F-37200 Tours, France
[2] Univ Toulouse, Inst Math Toulouse, CNRS, UMR 5219, F-31062 Toulouse, France
[3] Univ Duisburg Essen, Fachbereich Math, D-45117 Essen, Germany
关键词
convergence to steady state; degenerate parabolic equation; viscosity solutions; gradient source term; DIRICHLET BOUNDARY-CONDITIONS; PARABOLIC EQUATIONS; GLOBAL-SOLUTIONS; TIME BEHAVIOR;
D O I
10.3233/ASY-2010-0981
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Convergence to a single steady state is shown for non-negative and radially symmetric solutions to a diffusive Hamilton-Jacobi equation with homogeneous Dirichlet boundary conditions, the diffusion being the p-Laplacian operator, p >= 2, and the source term a power of the norm of the gradient of u. As a first step, the radially symmetric and non-increasing stationary solutions are characterized.
引用
收藏
页码:229 / 250
页数:22
相关论文
共 22 条
[1]  
[Anonymous], 1994, MATH APPL
[2]  
[Anonymous], 1968, TRANSLATIONS MATH MO
[3]  
Arrieta JM, 2004, ANN SCUOLA NORM-SCI, V3, P1
[4]  
Bardi M., 1997, Optimal control and viscosity solutions of HamiltonJacobi-Bellman equations
[5]   EXIT TIME PROBLEMS IN OPTIMAL-CONTROL AND VANISHING VISCOSITY METHOD [J].
BARLES, G ;
PERTHAME, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (05) :1133-1148
[6]   On the large time behavior of solutions of Hamilton-Jacobi equations [J].
Barles, G ;
Souganidis, PE .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (04) :925-939
[7]   On the generalized Dirichlet problem for viscous Hamilton-Jacobi equations [J].
Barles, G ;
Da Lio, F .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (01) :53-75
[8]   Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term [J].
Barles, G ;
Busca, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (11-12) :2323-2337
[9]   UNIQUENESS AND CONTINUUM OF FOLIATED SOLUTIONS FOR A QUASI-LINEAR ELLIPTIC EQUATION WITH A NON-LIPSCHITZ NONLINEARITY [J].
BARLES, G ;
DIAZ, G ;
DIAZ, JI .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (5-6) :1037-1050
[10]  
Benachour S, 2007, ASYMPTOTIC ANAL, V51, P209