On Robustness in Optimization-Based Constrained Iterative Learning Control

被引:5
作者
Liao-McPherson, Dominic [1 ]
Balta, Efe C. [1 ]
Rupenyan, Alisa [1 ,2 ]
Lygeros, John [1 ]
机构
[1] Swiss Fed Inst Technol, Automat Control Lab, CH-8092 Zurich, Switzerland
[2] Inspire AG, Automat Optimierung & Mechatron English Automat O, CH-8005 Zurich, Switzerland
来源
IEEE CONTROL SYSTEMS LETTERS | 2022年 / 6卷
基金
瑞士国家科学基金会;
关键词
Optimization; Convergence; Uncertainty; Robustness; Task analysis; Robust control; Noise measurement; Optimization algorithms; robust control; iterative learning control; manufacturing systems and automation; SYSTEMS; ALGORITHMS; DESIGN; ILC;
D O I
10.1109/LCSYS.2022.3178877
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Iterative learning control (ILC) is a control strategy for repetitive tasks wherein information from previous runs is leveraged to improve future performance. Optimization-based ILC (OB-ILC) is a powerful design framework for constrained ILC where measurements from the process are integrated into an optimization algorithm to provide robustness against noise and modelling error. This paper proposes a robust ILC controller for constrained linear processes based on the forward-backward splitting algorithm. It demonstrates how structured uncertainty information can be leveraged to ensure constraint satisfaction and provides a rigorous stability analysis in the iteration domain by combining concepts from monotone operator theory and robust control. Numerical simulations of a precision motion stage support the theoretical results.
引用
收藏
页码:2846 / 2851
页数:6
相关论文
共 30 条
  • [1] Iterative learning control: Brief survey and categorization
    Ahn, Hyo-Sung
    Chen, YangQuan
    Moore, Kevin L.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2007, 37 (06): : 1099 - 1121
  • [2] Iterative learning control for discrete-time systems with exponential rate of convergence
    Amann, N
    Owens, DH
    Rogers, E
    [J]. IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1996, 143 (02): : 217 - 224
  • [3] [Anonymous], 2009, Monographs in Mathematics
  • [4] BETTERING OPERATION OF ROBOTS BY LEARNING
    ARIMOTO, S
    KAWAMURA, S
    MIYAZAKI, F
    [J]. JOURNAL OF ROBOTIC SYSTEMS, 1984, 1 (02): : 123 - 140
  • [5] A Norm Optimal Approach to Time-Varying ILC With Application to a Multi-Axis Robotic Testbed
    Barton, Kira L.
    Alleyne, Andrew G.
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2011, 19 (01) : 166 - 180
  • [6] Baumgärtner K, 2020, IEEE DECIS CONTR P, P3751, DOI 10.1109/CDC42340.2020.9303854
  • [7] Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
  • [8] Beck A., 2017, MOS SIAM SERIES OPTI, V25
  • [9] A survey of iterative learning control
    Bristow, Douglas A.
    Tharayil, Marina
    Alleyne, Andrew G.
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2006, 26 (03): : 96 - 114
  • [10] A high precision motion control system with application to microscale robotic deposition
    Bristow, Douglas A.
    Alleyne, Andrew G.
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2006, 14 (06) : 1008 - 1020