On Robustness in Optimization-Based Constrained Iterative Learning Control

被引:6
作者
Liao-McPherson, Dominic [1 ]
Balta, Efe C. [1 ]
Rupenyan, Alisa [1 ,2 ]
Lygeros, John [1 ]
机构
[1] Swiss Fed Inst Technol, Automat Control Lab, CH-8092 Zurich, Switzerland
[2] Inspire AG, Automat Optimierung & Mechatron English Automat O, CH-8005 Zurich, Switzerland
来源
IEEE CONTROL SYSTEMS LETTERS | 2022年 / 6卷
基金
瑞士国家科学基金会;
关键词
Optimization; Convergence; Uncertainty; Robustness; Task analysis; Robust control; Noise measurement; Optimization algorithms; robust control; iterative learning control; manufacturing systems and automation; SYSTEMS; ALGORITHMS; DESIGN; ILC;
D O I
10.1109/LCSYS.2022.3178877
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Iterative learning control (ILC) is a control strategy for repetitive tasks wherein information from previous runs is leveraged to improve future performance. Optimization-based ILC (OB-ILC) is a powerful design framework for constrained ILC where measurements from the process are integrated into an optimization algorithm to provide robustness against noise and modelling error. This paper proposes a robust ILC controller for constrained linear processes based on the forward-backward splitting algorithm. It demonstrates how structured uncertainty information can be leveraged to ensure constraint satisfaction and provides a rigorous stability analysis in the iteration domain by combining concepts from monotone operator theory and robust control. Numerical simulations of a precision motion stage support the theoretical results.
引用
收藏
页码:2846 / 2851
页数:6
相关论文
共 30 条
[1]   Iterative learning control: Brief survey and categorization [J].
Ahn, Hyo-Sung ;
Chen, YangQuan ;
Moore, Kevin L. .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2007, 37 (06) :1099-1121
[2]   Iterative learning control for discrete-time systems with exponential rate of convergence [J].
Amann, N ;
Owens, DH ;
Rogers, E .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1996, 143 (02) :217-224
[3]   BETTERING OPERATION OF ROBOTS BY LEARNING [J].
ARIMOTO, S ;
KAWAMURA, S ;
MIYAZAKI, F .
JOURNAL OF ROBOTIC SYSTEMS, 1984, 1 (02) :123-140
[4]   A Norm Optimal Approach to Time-Varying ILC With Application to a Multi-Axis Robotic Testbed [J].
Barton, Kira L. ;
Alleyne, Andrew G. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2011, 19 (01) :166-180
[5]  
Baumgärtner K, 2020, IEEE DECIS CONTR P, P3751, DOI 10.1109/CDC42340.2020.9303854
[6]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[7]  
Beck A., 2017, MOS SIAM SERIES OPTI, V25
[8]   A survey of iterative learning control [J].
Bristow, Douglas A. ;
Tharayil, Marina ;
Alleyne, Andrew G. .
IEEE CONTROL SYSTEMS MAGAZINE, 2006, 26 (03) :96-114
[9]   A high precision motion control system with application to microscale robotic deposition [J].
Bristow, Douglas A. ;
Alleyne, Andrew G. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2006, 14 (06) :1008-1020
[10]   Learning control of process systems with hard input constraints [J].
Chen, CT ;
Peng, ST .
JOURNAL OF PROCESS CONTROL, 1999, 9 (02) :151-160