Discovering Collocation Rules and Spatial Association Rules in Spatial Data with Extended Objects Using Delaunay Diagrams

被引:0
|
作者
Bembenik, Robert [1 ]
Ruszczyk, Aneta [2 ]
Protaziuk, Grzegorz [1 ]
机构
[1] Warsaw Univ Technol, Inst Comp Sci, Nowowiejska 15-19, PL-00665 Warsaw, Poland
[2] ATOS, PL-02675 Warsaw, Poland
关键词
extended objects; spatial collocations; Delaunay diagram; spatial data mining;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper illustrates issues related to mining spatial association rules and collocations. In particular it presents a new method of mining spatial association rules and collocations in spatial data with extended objects using Delaunay diagrams. The method does not require previous knowledge of analyzed data nor specifying any space-related input parameters and is efficient in terms of execution times.
引用
收藏
页码:293 / 300
页数:8
相关论文
共 50 条
  • [1] FARICS: a method of mining spatial association rules and collocations using clustering and Delaunay diagrams
    Bembenik, Robert
    Rybinski, Henryk
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2009, 33 (01) : 41 - 64
  • [2] FARICS: a method of mining spatial association rules and collocations using clustering and Delaunay diagrams
    Robert Bembenik
    Henryk Rybiński
    Journal of Intelligent Information Systems, 2009, 33 : 41 - 64
  • [3] Discovering fuzzy spatial association rules
    Kacar, E
    Cicekli, NK
    DATA MINING AND KNOWLEDGE DISCOVERY: THEORY, TOOLS AND TECHNOLOGY IV, 2002, 4730 : 94 - 102
  • [4] Discovery of Spatial Association Rules from Fuzzy Spatial Data
    da Silva, Henrique P.
    Felix, Thiago D. R.
    de Venancio, Pedro V. A. B.
    Carniel, Anderson C.
    CONCEPTUAL MODELING (ER 2022), 2022, 13607 : 179 - 193
  • [5] Discovering spatial interaction patterns of near repeat crime by spatial association rules mining
    He, Zhanjun
    Tao, Liufeng
    Xie, Zhong
    Xu, Chong
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [6] Discovering spatial interaction patterns of near repeat crime by spatial association rules mining
    Zhanjun He
    Liufeng Tao
    Zhong Xie
    Chong Xu
    Scientific Reports, 10
  • [7] Mining Spatial Association Rules to Automatic Grouping of Spatial Data Objects Using Multiple Kernel-Based Probabilistic Clustering
    Jayababu Y.
    Varma G.P.S.
    Govardhan A.
    Jayababu, Y. (jayababuy2015@gmail.com), 1600, Walter de Gruyter GmbH (26): : 561 - 572
  • [8] Mining spatial association rules
    Bembenik, R
    Protaziuk, G
    INTELLIGENT INFORMATION PROCESSING AND WEB MINING, 2004, : 3 - 12
  • [9] Mining spatial gene expression data for association rules
    van Hemert, Jano
    Baldock, Richard
    BIOINFORMATICS RESEARCH AND DEVELOPMENT, PROCEEDINGS, 2007, 4414 : 66 - +
  • [10] Fuzzy set approaches to spatial data mining of association rules
    Ladner, Roy
    Cobb, Maria A.
    Petry, Frederick E.
    Transactions in GIS, 2003, 7 (01) : 123 - 138