FERMIONIC DUAL OF ONE-DIMENSIONAL BOSONIC PARTICLES WITH DERIVATIVE DELTA FUNCTION POTENTIAL

被引:0
作者
Basu-Mallick, B. [1 ]
Bhattacharyya, Tanaya [2 ]
机构
[1] Saha Inst Nucl Phys, Theory Grp, Kolkata 700064, India
[2] Syamaprasad Coll, Dept Phys, Kolkata 700026, India
关键词
Boson-fermion duality; exactly solvable systems; self-adjoint extensions; NONLINEAR SCHRODINGER MODEL; SOLITON STATES; BETHE-ANSATZ; GAS;
D O I
10.1142/S0217732310032214
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the bosonfermion duality relation for the case of quantum integrable derivative delta-function Bose gas. In particular, we find a dual fermionic system with nonvanishing zero-range interaction for the simplest case of two bosonic particles with derivative delta-function interaction. The coupling constant of this dual fermionic system becomes inversely proportional to the product of the coupling constant of its bosonic counterpart and the center-of-mass momentum of the corresponding eigenfunction.
引用
收藏
页码:715 / 725
页数:11
相关论文
共 27 条
[1]   Anyons and chiral solitons on a line [J].
Aglietti, U ;
Griguolo, L ;
Jackiw, R ;
Pi, SY ;
Seminara, D .
PHYSICAL REVIEW LETTERS, 1996, 77 (21) :4406-4409
[2]  
Albeverio S., 1988, Solvable Models in Quantum Mechanics
[3]   Quantum bound states for a derivative nonlinear Schrodinger model and number theory [J].
Basu-Mallick, B ;
Bhattacharyya, T ;
Sen, D .
MODERN PHYSICS LETTERS A, 2004, 19 (36) :2697-2706
[4]   Bound and anti-bound soliton states for a quantum integrable derivative nonlinear Schrodinger model [J].
Basu-Mallick, B ;
Bhattacharyya, T ;
Sen, D .
PHYSICS LETTERS A, 2004, 325 (5-6) :375-380
[5]   Novel multi-band quantum soliton states for a derivative nonlinear Sohrodinger model [J].
Basu-Mallick, B ;
Bhattacharyya, T ;
Sen, D .
NUCLEAR PHYSICS B, 2003, 675 (03) :516-532
[6]   Jost solutions and quantum conserved quantities of an integrable derivative nonlinear Schrodinger model [J].
Basu-Mallick, B ;
Bhattacharyya, T .
NUCLEAR PHYSICS B, 2003, 668 (03) :415-446
[7]   Algebraic Bethe ansatz for a quantum integrable derivative nonlinear Schrodinger model [J].
Basu-Mallick, B ;
Bhattacharyya, T .
NUCLEAR PHYSICS B, 2002, 634 (03) :611-627
[8]   Realizing discontinuous wave functions with renormalized short-range potentials [J].
Cheon, T ;
Shigehara, T .
PHYSICS LETTERS A, 1998, 243 (03) :111-116
[9]   Fermion-Boson duality of one-dimensional quantum particles with generalized contact interactions [J].
Cheon, T ;
Shigehara, T .
PHYSICAL REVIEW LETTERS, 1999, 82 (12) :2536-2539
[10]   DIMENSIONAL REDUCTIONS AND EXACT-SOLUTIONS OF A GENERALIZED NONLINEAR SCHRODINGER-EQUATION [J].
CLARKSON, PA .
NONLINEARITY, 1992, 5 (02) :453-472