HPC enables efficient 3D membrane segmentation in electron tomography

被引:1
作者
Moreno, J. J. [1 ]
Garzon, E. M. [1 ]
Fernandez, J. J. [2 ,4 ]
Martinez-Sanchez, A. [3 ,4 ]
机构
[1] Univ Almeria, Informat Dept, CeiA3, Ctra Sacramento S-N, Almeria 04120, Andalucia, Spain
[2] CSIC, Nanomat & Nanotechnol Res Ctr CINN, Oviedo, Spain
[3] Univ Oviedo, Comp Sci Dept, Oviedo, Spain
[4] Hlth Res Inst Asturias ISPA, Oviedo, Spain
关键词
Electron tomography; Membrane segmentation; Tensor voting; Steerable filters; High performance computing; GPU computing; 3-DIMENSIONAL RECONSTRUCTIONS; DESIGN;
D O I
10.1007/s11227-022-04607-z
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Electron Tomography (ET) is a powerful three-dimensional (3D) imaging technique used in structural biology and biomedicine to allow the visualization of the interior of cells at close-to-molecular resolution. Interpretation of the 3D volumes in ET is usually challenging due to the complexity of the cellular environment, noise conditions and other factors. Automated segmentation methods focused on membranes of the cells and organelles greatly facilitate visualization and interpretation of the 3D volumes. However, they are typically computationally expensive and spend significant processing time on standard computers. In this work, we introduce efficient implementations of one of the methods most commonly used in the ET field for membrane segmentation. They were developed by using High Performance Computing (HPC) techniques to make the most of modern CPU-based and GPU-based computing platforms. A thorough evaluation of the performance on state-of-the-art machines was carried out. The HPC implementations succeed in achieving remarkable speedups, which are around 100x on GPUs, and making it possible to process large 3D volumes in the order of seconds or a few minutes.
引用
收藏
页码:19097 / 19113
页数:17
相关论文
共 36 条
  • [1] Fast tomographic reconstruction on multicore computers
    Agulleiro, J. I.
    Fernandez, J. J.
    [J]. BIOINFORMATICS, 2011, 27 (04) : 582 - 583
  • [2] Evaluation of a Multicore-Optimized Implementation for Tomographic Reconstruction
    Agulleiro, Jose-Ignacio
    Jesus Fernandez, Jose
    [J]. PLOS ONE, 2012, 7 (11):
  • [3] [Anonymous], 2017, Computer Architecture: A Quantitative Approach
  • [4] In Situ Architecture and Cellular Interactions of PolyQ Inclusions
    Baeuerlein, Felix J. B.
    Saha, Itika
    Mishra, Archana
    Kalemanov, Maria
    Martinez-Sanchez, Antonio
    Klein, Ruediger
    Dudanova, Irina
    Hipp, Mark S.
    Hartl, F. Ulrich
    Baumeister, Wolfgang
    Fernandez-Busnadiego, Ruben
    [J]. CELL, 2017, 171 (01) : 179 - +
  • [5] The mechanism of HIV-1 core assembly: Insights from three-dimensional reconstructions of authentic virions
    Briggs, JAG
    Gruenewald, K
    Glass, B
    Foerster, F
    Kraeusslich, HG
    Fuller, SD
    [J]. STRUCTURE, 2006, 14 (01) : 15 - 20
  • [6] Butenhof D.R., 1997, PROGRAMMING POSIX TH
  • [7] The structure of the COPI coat determined within the cell
    Bykov, Yury S.
    Schaffer, Miroslava
    Dodonova, Svetlana O.
    Albert, Sahradha
    Plitzko, Juergen M.
    Baumeister, Wolfgang
    Engel, Benjamin D.
    Briggs, John A. G.
    [J]. ELIFE, 2017, 6
  • [8] Viral Capsid Trafficking along Treadmilling Tubulin Filaments in Bacteria
    Chaikeeratisak, Vorrapon
    Khanna, Kanika
    Nguyen, Katrina T.
    Sugie, Joseph
    Egan, MacKennon E.
    Erb, Marcella L.
    Vavilina, Anastasia
    Nonejuie, Poochit
    Nieweglowska, Eliza
    Pogliano, Kit
    Agard, David A.
    Villa, Elizabeth
    Pogliano, Joe
    [J]. CELL, 2019, 177 (07) : 1771 - +
  • [9] Chen M, 2017, NAT METHODS, V14, P983, DOI [10.1038/NMETH.4405, 10.1038/nmeth.4405]
  • [10] High performance computing in structural determination by electron cryomicroscopy
    Fernandez, J. J.
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2008, 164 (01) : 1 - 6