We prove some supercongruence and divisibility results on sums involving Domb numbers, which confirm four conjectures of Z.-W. Sun and Z.-H. Sun. For instance, by using a transformation formula due to Chan and Zudilin, we show that for any prime p >= 5, Sigma(k = 0) (p 1) 3k + 1/(-32)(k) Domb (k) (-1) p - 1/2 p + p(3) Ep - 3 (mod p(4)) which is regarded as a p-adic analogue of the interesting formula for 1/pi to Rogers: Sigma(infinity)(k = 0) 3k + 1/(-32)(k) Domb (k) = 2/pi. Here Domb(n) and E-n the famous Domb numbers and Euler numbers. (C) 2021 Elsevier Masson SAS. All rights reserved.
机构:
Huaiyin Normal Univ, Sch Math & Stat, Huaian 223300, Jiangsu, Peoples R ChinaHuaiyin Normal Univ, Sch Math & Stat, Huaian 223300, Jiangsu, Peoples R China
Guo, Victor J. W.
;
Schlosser, Michael J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, AustriaHuaiyin Normal Univ, Sch Math & Stat, Huaian 223300, Jiangsu, Peoples R China
机构:
Huaiyin Normal Univ, Sch Math & Stat, Huaian 223300, Jiangsu, Peoples R ChinaHuaiyin Normal Univ, Sch Math & Stat, Huaian 223300, Jiangsu, Peoples R China
Guo, Victor J. W.
;
Schlosser, Michael J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wien, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, AustriaHuaiyin Normal Univ, Sch Math & Stat, Huaian 223300, Jiangsu, Peoples R China