Supercongruences for sums involving Domb numbers

被引:4
作者
Liu, Ji-Cai [1 ]
机构
[1] Wenzhou Univ, Dept Math, Wenzhou 325035, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2021年 / 169卷
基金
中国国家自然科学基金;
关键词
Supercongruences; Domb numbers; Franel numbers; Euler numbers; CONGRUENCES; TRANSFORMATIONS; CONJECTURES; PROOF;
D O I
10.1016/j.bulsci.2021.102992
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove some supercongruence and divisibility results on sums involving Domb numbers, which confirm four conjectures of Z.-W. Sun and Z.-H. Sun. For instance, by using a transformation formula due to Chan and Zudilin, we show that for any prime p >= 5, Sigma(k = 0) (p 1) 3k + 1/(-32)(k) Domb (k) (-1) p - 1/2 p + p(3) Ep - 3 (mod p(4)) which is regarded as a p-adic analogue of the interesting formula for 1/pi to Rogers: Sigma(infinity)(k = 0) 3k + 1/(-32)(k) Domb (k) = 2/pi. Here Domb(n) and E-n the famous Domb numbers and Euler numbers. (C) 2021 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:13
相关论文
共 38 条
[1]   GENERALIZATIONS OF CLAUSEN'S FORMULA AND ALGEBRAIC TRANSFORMATIONS OF CALABI-YAU DIFFERENTIAL EQUATIONS [J].
Almkvist, Gert ;
Van Straten, Duco ;
Zudilin, Wadim .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2011, 54 :273-295
[2]   Elliptic integral evaluations of Bessel moments and applications [J].
Bailey, David H. ;
Borwein, Jonathan M. ;
Broadhurst, David ;
Glasser, M. L. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (20)
[3]   Some arithmetic properties of short random walk integrals [J].
Borwein, Jonathan M. ;
Nuyens, Dirk ;
Straub, Armin ;
Wan, James .
RAMANUJAN JOURNAL, 2011, 26 (01) :109-132
[4]   NEW REPRESENTATIONS FOR APERY-LIKE SEQUENCES [J].
Chan, Heng Huat ;
Zudilin, Wadim .
MATHEMATIKA, 2010, 56 (01) :107-117
[5]   New analogues of Clausen's identities arising from the theory of modular forms [J].
Chan, Heng Huat ;
Tanigawa, Yoshio ;
Yang, Yifan ;
Zudilin, Wadim .
ADVANCES IN MATHEMATICS, 2011, 228 (02) :1294-1314
[6]   Domb's numbers and Ramanujan-Sato type series for 1/π [J].
Chan, HH ;
Chan, SH ;
Liu, ZG .
ADVANCES IN MATHEMATICS, 2004, 186 (02) :396-410
[7]   ON THE THEORY OF COOPERATIVE PHENOMENA IN CRYSTALS [J].
DOMB, C .
ADVANCES IN PHYSICS, 1960, 9 (34) :149-361
[8]  
Franel J., 1894, INTERMEDIAIRE MATH, V1, P45
[9]   A New Family of q-Supercongruences Modulo the Fourth Power of a Cyclotomic Polynomial [J].
Guo, Victor J. W. ;
Schlosser, Michael J. .
RESULTS IN MATHEMATICS, 2020, 75 (04)
[10]   Some congruences related to a congruence of Van Hamme [J].
Guo, Victor J. W. ;
Liu, Ji-Cai .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (03) :221-231