Toxicogenomics: Overview and potential applications for the study of non-covalent DNA interacting chemicals

被引:48
作者
Li, Heng-Hong
Aubrecht, Jiri
Fornace, Albert J., Jr. [1 ]
机构
[1] Georgetown Univ, Dept Biochem & Mol & Cellular Biol, Washington, DC 20007 USA
[2] Georgetown Univ, Lombardi Comprehens Canc Ctr, Washington, DC 20007 USA
[3] Pfizer Global Res & Dev, Groton, CT 06340 USA
关键词
toxicogenomics; expression profiling; intercalators; genetic toxicology; gene expression;
D O I
10.1016/j.mrfmmm.2007.03.013
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Non-covalent DNA interacting agents, DNA-groove binding chemicals and DNA intercalators, are generally considered less cytotoxic than agents producing covalent DNA adducts and other DNA damage. Although the impact of non-covalent compound-DNA interactions on convoluted molecular and biochemical pathways is not well characterized, the most prominent effects include DNA conformational and related structural perturbations, interference with normal DNA protein interactions, such as topoisomerases, as well as effects on mitochondrial DNA and function. The cellular responses to such perturbations would be expected to include changes in transcription of a variety of genes. The emerging field of toxicogenomics seeks to exploit gene responses to define expression profiling signatures for various types of drugs and toxicants, and to provide mechanistic insight into their cellular effects. There are a variety of examples whereby different classes of genotoxicants and non-genotoxic agents can be distinguished by gene expression profiling using functional genomics approaches, which survey global transcriptional responses. In this review, we will discuss the promises and precautions in the use of functional genomics approaches to characterize stress agents including non-covalent DNA interacting agents. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:98 / 108
页数:11
相关论文
共 87 条
[1]  
Amundson SA, 2000, RADIAT RES, V154, P342, DOI 10.1667/0033-7587(2000)154[0342:IOPMBI]2.0.CO
[2]  
2
[3]   Stress-specific signatures: expression profiling of p53 wild-type and -null human cells [J].
Amundson, SA ;
Do, KT ;
Vinikoor, L ;
Koch-Paiz, CA ;
Bittner, ML ;
Trent, JM ;
Meltzer, P ;
Fornace, AJ .
ONCOGENE, 2005, 24 (28) :4572-4579
[4]   Induction of stress genes by low doses of gamma rays [J].
Amundson, SA ;
Do, KT ;
Fornace, AJ .
RADIATION RESEARCH, 1999, 152 (03) :225-231
[5]   Human in vivo radiation-induced biomarkers:: Gene expression changes in radiotherapy patients [J].
Amundson, SA ;
Grace, MB ;
McLeland, CB ;
Epperly, MW ;
Yeager, A ;
Zhan, QM ;
Greenberger, JS ;
Fornace, AJ .
CANCER RESEARCH, 2004, 64 (18) :6368-6371
[6]   Functional genomics as a window on radiation stress signaling [J].
Amundson, SA ;
Bittner, M ;
Fornace, AJ .
ONCOGENE, 2003, 22 (37) :5828-5833
[7]   Fluorescent cDNA microarray hybridization reveals complexity and heterogeneity of cellular genotoxic stress responses [J].
Amundson, SA ;
Bittner, M ;
Chen, YD ;
Trent, J ;
Meltzer, P ;
Fornace, AJ .
ONCOGENE, 1999, 18 (24) :3666-3672
[8]   A nucleotide excision repair master-switch: p53 regulated coordinate induction of global genomic repair genes [J].
Amundson, SA ;
Patterson, A ;
Do, KT ;
Fornace, AJ .
CANCER BIOLOGY & THERAPY, 2002, 1 (02) :145-149
[9]   Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress [J].
Amundson, SA ;
Myers, TG ;
Fornace, AJ .
ONCOGENE, 1998, 17 (25) :3287-3299
[10]  
Amundson SA, 2000, CANCER RES, V60, P6101