A generalization of Orlicz-Sobolev spaces on metric measure spaces via Banach function spaces

被引:5
作者
Mocanu, Marcelina [1 ]
机构
[1] Univ Bacau, Fac Sci, Dept Math & Informat, Bacau 60014, Romania
关键词
Banach function space; metric measure space; modulus of a family of curves; Sobolev-type space; Sobolev capacity; quasicontinuity;
D O I
10.1080/17476930902999017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that several basic definitions and results regarding modulus, capacity and Orlicz-Sobolev spaces on metric measure spaces can be generalized to the case where the role of the Orlicz space is played by an abstract Banach function space B. This new general setting could bring a new perspective in the study of Sobolev-type spaces on metric measure spaces, due to the great generality of Banach function spaces. We prove several properties of the newly introduced Sobolev-type space N-1,N-B (X), including its completeness and a Mazur-type theorem.
引用
收藏
页码:253 / 267
页数:15
相关论文
共 15 条
[1]  
Aissaoui N., 2004, ABSTR APPL ANAL, V2004, P1
[2]  
[Anonymous], 1971, LECT NOTES MATH
[3]  
[Anonymous], 2003, Georgian Math. J.
[4]  
Bennett C., 1988, PURE APPL MATH, V129
[5]  
Björn A, 2008, HOUSTON J MATH, V34, P1197
[6]  
Cazacu CA, 2005, HANDBOOK OF COMPLEX ANALYSIS: GEOMETRIC FUNCTION THEORY, VOL 2, P687
[7]  
Hajasz P, 2003, CONT MATH, V338, P173
[8]  
Heinonen J., 2001, Lectures on analysis on metric spaces, DOI 10.1007/978-1-4613-0131-8
[9]  
Koskela P, 1998, STUD MATH, V131, P1
[10]  
Rickman S, 1993, QUASIREGULAR MAPPING, V26