Glucagon-like peptide-1, glucagon-like peptide-2, and lipid metabolism

被引:31
作者
Lutz, Thomas A. [1 ,2 ]
Osto, Elena [2 ,3 ,4 ]
机构
[1] Univ Zurich, Inst Vet Physiol, Vetsuisse Fac, Winterthurerstr 260, CH-8057 Zurich, Switzerland
[2] Univ Zurich, Ctr Integrat Human Physiol, Zurich, Switzerland
[3] Swiss Fed Inst Technol, Lab Translat Nutr Biol, Inst Food Nutr & Hlth, Schwerzenbach, Switzerland
[4] Univ Zurich, Ctr Mol Cardiol, Schlieren, Switzerland
基金
瑞士国家科学基金会;
关键词
glucagon-like peptide-1; glucagon-like peptide-2; incretin; lipoprotein; Y GASTRIC BYPASS; INTESTINAL LIPOPROTEIN PRODUCTION; RECEPTOR AGONIST; CHYLOMICRON PRODUCTION; ENDOTHELIAL FUNCTION; GLUCOSE-METABOLISM; HEALTHY HUMANS; BODY-WEIGHT; GLP-1; LIRAGLUTIDE;
D O I
10.1097/MOL.0000000000000293
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Purpose of review Glucagon-like peptide-1 (GLP-1) is the best known incretin hormone able to potentiate glucose-induced insulin secretion. Moreover, GLP-1 is currently under intensive investigation as a potential crucial mediator of beneficial metabolic effects after bariatric surgery, because of its eating inhibitory, antiobesity, and antidiabetes effects. This review briefly summarizes recent findings on the specific effects of GLP-1 on lipoprotein metabolism. The related hormone GLP-2 is derived from the same precursor gene; its effects on lipoprotein metabolism will also be discussed briefly. Recent findings Pharmacological activation of the GLP-1 system has beneficial effects on obesity-induced alterations of lipoprotein metabolism. These benefits can be observed with direct GLP-1 receptor agonists like liraglutide or exendin-4, but also with inhibitors of dipeptidyl peptidase IV (DPP-IV), which reduce the breakdown of endogenous GLP-1. The role of GLP-2-related pathways on lipid levels and metabolism are less clear, but some effects (e. g. increased intestinal chylomicron output) are opposite to GLP-1. Summary Activation of the GLP-1-dependent pathways may perhaps translate into a lower cardiovascular risk. Understanding how GLP-1 and GLP-2 regulate and interact in the control of lipoprotein metabolism will set the stage for the development of new strategies to treat dyslipidaemia in obesity, diabetes, and other cardiometabolic diseases.
引用
收藏
页码:257 / 263
页数:7
相关论文
共 54 条
[1]   Time course of cardiometabolic alterations in a high fat high sucrose diet mice model and improvement after GLP-1 analog treatment using multimodal cardiovascular magnetic resonance [J].
Abdesselam, Ines ;
Pepino, Pauline ;
Troalen, Thomas ;
Macia, Michael ;
Ancel, Patricia ;
Masi, Brice ;
Fourny, Natacha ;
Gaborit, Benedicte ;
Giannesini, Benoit ;
Kober, Frank ;
Dutour, Anne ;
Bernard, Monique .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2015, 17
[2]   Effects of glucagon-like peptide-1 on islet function and insulin sensitivity in noninsulin-dependent diabetes mellitus [J].
Ahren, B ;
Larsson, H ;
Holst, JJ .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1997, 82 (02) :473-478
[3]   Glucagon-like peptide-1 preserves non-alcoholic fatty liver disease through inhibition of the endoplasmic reticulum stress-associated pathway [J].
Ao, Na ;
Yang, Jing ;
Wang, Xiaochen ;
Du, Jian .
HEPATOLOGY RESEARCH, 2016, 46 (04) :343-353
[4]   Effect of liraglutide administration and a calorie-restricted diet on lipoprotein profile in overweight/obese persons with prediabetes [J].
Ariel, D. ;
Kim, S. H. ;
Abbasi, F. ;
Lamendola, C. A. ;
Liu, A. ;
Reaven, G. M. .
NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2014, 24 (12) :1317-1322
[5]   Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis [J].
Armstrong, Matthew J. ;
Hull, Diana ;
Guo, Kathy ;
Barton, Darren ;
Hazlehurst, Jonathan M. ;
Gathercole, Laura L. ;
Nasiri, Maryam ;
Yu, Jinglei ;
Gough, Stephen C. ;
Newsome, Philip N. ;
Tomlinson, Jeremy W. .
JOURNAL OF HEPATOLOGY, 2016, 64 (02) :399-408
[6]   GLP-1 and energy balance: an integrated model of short-term and long-term control [J].
Barrera, Jason G. ;
Sandoval, Darleen A. ;
D'Alessio, David A. ;
Seeley, Randy J. .
NATURE REVIEWS ENDOCRINOLOGY, 2011, 7 (09) :507-516
[7]   Gastric Bypass Increases Energy Expenditure in Rats [J].
Bueter, Marco ;
Loewenstein, Christian ;
Olbers, Torsten ;
Wang, Maggie ;
Cluny, Nina L. ;
Bloom, Stephen R. ;
Sharkey, Keith A. ;
Lutz, Thomas A. ;
Le Roux, Carel W. .
GASTROENTEROLOGY, 2010, 138 (05) :1845-U56
[8]   Glucagon-like peptide-1 (GLP-1) and its split products GLP-1(9-37) and GLP-1(28-37) stabilize atherosclerotic lesions in apoe-/- mice [J].
Burgmaier, Mathias ;
Liberman, Ana ;
Moellmann, Julia ;
Kahles, Florian ;
Reith, Sebastian ;
Lebherz, Corinna ;
Marx, Nikolaus ;
Lehrke, Michael .
ATHEROSCLEROSIS, 2013, 231 (02) :427-435
[9]   Weight-Independent Changes in Blood Glucose Homeostasis After Gastric Bypass or Vertical Sleeve Gastrectomy in Rats [J].
Chambers, Adam P. ;
Jessen, Lene ;
Ryan, Karen K. ;
Sisley, Stephanie ;
Wilson-Perez, Hilary E. ;
Stefater, Margaret A. ;
Gaitonde, Shrawan G. ;
Sorrell, Joyce E. ;
Toure, Mouhamadoul ;
Berger, Jose ;
D'Alessio, David A. ;
Woods, Stephen C. ;
Seeley, Randy J. ;
Sandoval, Darleen A. .
GASTROENTEROLOGY, 2011, 141 (03) :950-958
[10]   The entero-insular axis in type 2 diabetes - incretins as therapeutic agents [J].
Creutzfeldt, W .
EXPERIMENTAL AND CLINICAL ENDOCRINOLOGY & DIABETES, 2001, 109 :S288-S303