Seasonal dependency of the atmospheric oxidizing capacity of the marine boundary layer of Bermuda

被引:6
作者
Elshorbany, Yasin [1 ]
Zhu, Yuting [2 ,3 ]
Wang, Youfeng [2 ,4 ]
Zhou, Xianliang [2 ,5 ]
Sanderfield, Summer [1 ]
Ye, Chunxiang [4 ]
Hayden, Matthew [6 ]
Peters, Andrew J. [6 ]
机构
[1] Univ S Florida, Coll Arts & Sci, St Petersburg, FL 33701 USA
[2] New York State Dept Hlth, Wadsworth Ctr, Albany, NY USA
[3] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA
[4] Peking Univ, Coll Environm Sci & Engn, State Key Lab Environm Simulat & Pollut Control, Beijing, Peoples R China
[5] SUNY Albany, Dept Environm Hlth Sci, Albany, NY 12222 USA
[6] Bermuda Inst Ocean Sci, St Georges, Bermuda
基金
中国国家自然科学基金;
关键词
Marine boundary layer; NOx-limited conditions; Oxidation capacity; HOx budget; PEROXY RADICAL CONCENTRATIONS; OXIDATION CAPACITY; RO2; RADICALS; MODELING OH; HO2; CHEMISTRY; AIR; CAMPAIGN; AEROSOL; OZONE;
D O I
10.1016/j.atmosenv.2022.119326
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, we investigate the atmospheric oxidation capacity in the marine boundary layer during two measurement campaigns in spring and summer 2019 at the Tudor Hill Marine Atmospheric Observatory, Bermuda. Measured species included non-methane hydrocarbons (NMHCs), HONO, HNO3, particulate matter, particulate nitrates, NO, NO2, O-3, in addition to the meteorological parameters. Measured concentrations of all species were generally higher in spring than in summer. During the spring and summer, OH initiation sources made 61% and 42% of the total OH production rate (P-OH) during the daytime, respectively. The higher levels of NMHCs and OH production from ozone photolysis lead to a higher oxidation rate of NMHCs in the spring compared to summer. However, the low NO in the spring and summer leads to inefficient recycling of RO2 and HO2 to OH, with HO2 reaction with NO accounting for only 22% and 42% of P-OH during spring and summer. Sensitivity analysis suggests that OH reactivity in the MBL can be potentially enhanced by an oceanic source rather than a secondary oxidation product. Including halogen monoxides, BrO and IO were found to decrease HO2 by similar to 14 and 18% during spring and summer, respectively, with marginal impact on OH due to the higher loss by aerosol uptake. The results demonstrate the complex multiphase HOx-Halogen chemistry and call for a more comprehensive multiphase investigation.
引用
收藏
页数:13
相关论文
共 64 条
[1]   Oxidation photochemistry in the Southern Atlantic boundary layer: unexpected deviations of photochemical steady state [J].
Beygi, Z. Hosaynali ;
Fischer, H. ;
Harder, H. D. ;
Martinez, M. ;
Sander, R. ;
Williams, J. ;
Brookes, D. M. ;
Monks, P. S. ;
Lelieveld, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (16) :8497-8513
[2]   Nonmethane hydrocarbon and halocarbon distributions during Atlantic Stratocumulus Transition Experiment Marine Aerosol and Gas Exchange, June 1992 [J].
Blake, DR ;
Blake, NJ ;
Smith, TW ;
Wingenter, OW ;
Rowland, FS .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D2) :4501-4514
[3]   Interfacial photochemistry at the ocean surface is a global source of organic vapors and aerosols [J].
Brueggemann, Martin ;
Hayeck, Nathalie ;
George, Christian .
NATURE COMMUNICATIONS, 2018, 9
[4]   Peroxy radical and related trace gas measurements in the boundary layer above the Atlantic Ocean [J].
Burkert, J ;
Andrés-Hernández, MD ;
Stöbener, D ;
Burrows, JP ;
Weissenmayer, M ;
Kraus, A .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D6) :5457-5477
[5]   Seasonal characteristics of tropical marine boundary layer air measured at the Cape Verde Atmospheric Observatory [J].
Carpenter, L. J. ;
Fleming, Z. L. ;
Read, K. A. ;
Lee, J. D. ;
Moller, S. J. ;
Hopkins, J. R. ;
Purvis, R. M. ;
Lewis, A. C. ;
Mueller, K. ;
Heinold, B. ;
Herrmann, H. ;
Fomba, K. Wadinga ;
van Pinxteren, D. ;
Mueller, C. ;
Tegen, I. ;
Wiedensohler, A. ;
Mueller, T. ;
Niedermeier, N. ;
Achterberg, E. P. ;
Patey, M. D. ;
Kozlova, E. A. ;
Heimann, M. ;
Heard, D. E. ;
Plane, J. M. C. ;
Mahajan, A. ;
Oetjen, H. ;
Ingham, T. ;
Stone, D. ;
Whalley, L. K. ;
Evans, M. J. ;
Pilling, M. J. ;
Leigh, R. J. ;
Monks, P. S. ;
Karunaharan, A. ;
Vaughan, S. ;
Arnold, S. R. ;
Tschritter, J. ;
Poehler, D. ;
Friess, U. ;
Holla, R. ;
Mendes, L. M. ;
Lopez, H. ;
Faria, B. ;
Manning, A. J. ;
Wallace, D. W. R. .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 2010, 67 (2-3) :87-140
[6]   Uptake of methanol to the North Atlantic Ocean surface [J].
Carpenter, LJ ;
Lewis, AC ;
Hopkins, JR ;
Read, KA ;
Longley, ID ;
Gallagher, MW .
GLOBAL BIOGEOCHEMICAL CYCLES, 2004, 18 (04) :1-8
[7]   Modeling OH, HO2, and RO2 radicals in the marine boundary layer 2.: Mechanism reduction and uncertainty analysis [J].
Carslaw, N ;
Jacobs, PJ ;
Pilling, MJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D23) :30257-30273
[8]   Modeling OH, HO2, and RO2 radicals in the marine boundary layer -: 1.: Model construction and comparison with field measurements [J].
Carslaw, N ;
Creasey, DJ ;
Heard, DE ;
Lewis, AC ;
McQuaid, JB ;
Pilling, MJ ;
Monks, PS ;
Bandy, BJ ;
Penkett, SA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D23) :30241-30255
[9]   Measurements of diurnal variations and eddy covariance (EC) fluxes of glyoxal in the tropical marine boundary layer: description of the Fast LED-CE-DOAS instrument [J].
Coburn, S. ;
Ortega, I. ;
Thalman, R. ;
Blomquist, B. ;
Fairall, C. W. ;
Volkamer, R. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2014, 7 (10) :3579-3595
[10]   Ozone and peroxy radical budgets in the marine boundary layer:: Modeling the effect of NOx [J].
Cox, RA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D7) :8047-8056