Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System

被引:4
作者
Ren, Hong-Bin [1 ,2 ,3 ]
Wang, Lei [1 ,2 ,4 ]
Dai, Xi [5 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[4] Songshan Lake Mat Lab, Dongguan 523808, Peoples R China
[5] Hong Kong Univ Sci & Technol, Dept Phys, Kowloon, Hong Kong 999077, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Kinetics - Machine learning - Ground state - Density functional theory;
D O I
10.1088/0256-307X/38/5/050701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Kinetic energy (KE) functional is crucial to speed up density functional theory calculation. However, deriving it accurately through traditional physics reasoning is challenging. We develop a generally applicable KE functional estimator for a one-dimensional (1D) extended system using a machine learning method. Our end-to-end solution combines the dimensionality reduction method with the Gaussian process regression, and simple scaling method to adapt to various 1D lattices. In addition to reaching chemical accuracy in KE calculation, our estimator also performs well on KE functional derivative prediction. Integrating this machine learning KE functional into the current orbital free density functional theory scheme is able to provide us with expected ground state electron density.
引用
收藏
页数:6
相关论文
共 25 条
[1]  
Alvarez MA., 2011, ARXIV11066251STATML
[2]  
[Anonymous], 2016, ARXIV160908144CSCL
[3]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[4]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[5]  
Bengio Y., 2005, DEP INFORM RECHERCHE, V1258
[6]  
Calandra R, 2016, IEEE IJCNN, P3338, DOI 10.1109/IJCNN.2016.7727626
[7]  
Chen G., 2019, ARXIV190609427CSLG
[8]  
Gilmer J, 2017, PR MACH LEARN RES, V70
[9]   Toward computational materials design: The impact of density functional theory on materials research [J].
Hafner, Jurgen ;
Wolverton, Christopher ;
Ceder, Gerbrand .
MRS BULLETIN, 2006, 31 (09) :659-665
[10]  
Hinton G., 2012, IEEE SIGNAL PROC MAG, V29, P29, DOI [10.1109/MSP.2012.2184969, DOI 10.1109/MSP.2012.2184969]