Photocatalytic non-oxidative coupling of methane: Recent progress and future

被引:28
作者
Wu, Shiqun [1 ,2 ]
Wang, Lingzhi [1 ,2 ]
Zhang, Jinlong [1 ,2 ,3 ]
机构
[1] East China Univ Sci & Technol, Sch Chem & Mol Engn, Frontiers Sci Ctr Materiobiol & Dynam Chem, Feringa Nobel Prize Scientist Joint Res Ctr,Key L, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Sch Chem & Mol Engn, Frontiers Sci Ctr Materiobiol & Dynam Chem, Feringa Nobel Prize Scientist Joint Res Ctr,Joint, 130 Meilong Rd, Shanghai 200237, Peoples R China
[3] Yancheng Inst Technol, Sch Chem & Chem Engn, Yancheng 224051, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalysis; Non-oxidative coupling of methane; Methane activation; Noble metal; SILICA-ALUMINA; ACTIVE-SITES; PHOTOACTIVE SITES; CARBON-DIOXIDE; GALLIUM OXIDE; CONVERSION; FUELS; CHALLENGE; REDUCTION; ETHANE;
D O I
10.1016/j.jphotochemrev.2020.100400
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The importance of effectively converting methane to hydrogen and high value-added hydrocarbons chemicals is becoming more significant due to the huge resources of methane and increasing demands for chemicals. However, it is hard to convert methane into more useful hydrocarbons and hydrogen due to the enormous thermodynamic barrier, which often needs high energy and often results in catalyst deactivation and unsatisfactory product selectivity. Recently, a growing number of researches focusing on photocatalytic methane conversion under mild conditions have attracted much attention, demonstrating that photocatalytic non-oxidative coupling of methane (PNOCM) is a prospective and green method for methane conversion under mild conditions. Herein, we provide a review of the recent advance, remaining challenges, and prospects in PNOCM. Moreover, this review provides considerable guidance for rational design of efficient and stable photocatalysts towards PNOCM by theory predictions and experiment results. We hope this review can attract more attention to the important research field of energy conversion. (c) 2020 Elsevier B.V. All rights reserved. 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Importance of methane conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. Challenge in methane conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3. NOCM reaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2. Photocatalytic NOCM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. Non-noble-metal photocatalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1. Silica-based catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2. Metal oxide-based catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3. Zeolite-based catalysts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Plasma assisted non-oxidative methane coupling over Ni-Fe mixed metal oxides
    De Felice, Giulia
    Li, Sirui
    Anello, Gaetano
    Petit, Chantal
    Gallucci, Fausto
    Rebrov, Evgeny
    CATALYSIS TODAY, 2024, 440
  • [42] Synergy of Ag and AgBr in a Pressurized Flow Reactor for Selective Photocatalytic Oxidative Coupling of Methane
    Wang, Chao
    Li, Xiyi
    Ren, Yifei
    Jiao, Haimiao
    Wang, Feng Ryan
    Tang, Junwang
    ACS CATALYSIS, 2023, 13 (06) : 3768 - 3774
  • [43] Development of a microkinetic model for non-oxidative coupling of methane over a Cu catalyst in a non-thermal plasma reactor
    Pourali, Nima
    Vasilev, Maksim
    Abiev, Rufat
    Rebrov, Evgeny, V
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (39)
  • [44] The Effects of Pulse Shape on the Selectivity and Production Rate in Non-oxidative Coupling of Methane by a Micro-DBD Reactor
    Nima Pourali
    Volker Hessel
    Evgeny V. Rebrov
    Plasma Chemistry and Plasma Processing, 2022, 42 : 619 - 640
  • [45] Revealing Active Sites and Reaction Pathways in Methane Non-Oxidative Coupling over Iron-Containing Zeolites
    Zhang, Hao
    Bolshakov, Aleksei
    Meena, Raghavendra
    Garcia, Gustavo A.
    Dugulan, A. Iulian
    Parastaev, Alexander
    Li, Guanna
    Hensen, Emiel J. M.
    Kosinov, Nikolay
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (32)
  • [46] Identification of the structure of the Bi promoted Pt non-oxidative coupling of methane catalyst: a nanoscale Pt3Bi intermetallic alloy
    Chen, Johnny Zhu
    Wu, Zhenwei
    Zhang, Xiaoben
    Choi, Slgi
    Xiao, Yang
    Varma, Arvind
    Liu, Wei
    Zhang, Guanghui
    Miller, Jeffrey T.
    CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (06) : 1349 - 1356
  • [47] Non-oxidative Methane Coupling over Silica versus Silica-Supported Iron(II) Single Sites
    Sot, Petr
    Newton, Mark A.
    Baabe, Dirk
    Walter, Marc D.
    van Bavel, Alexander P.
    Horton, Andrew D.
    Coperet, Christophe
    van Bokhoven, Jeroen A.
    CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (36) : 8012 - 8016
  • [48] Non-oxidative methane coupling using Cu/ZnO/Al2O3 catalyst in DBD
    Gorska, Agnieszka
    Krawczyk, Krzysztof
    Jodzis, Slawomir
    Schmidt-Szalowski, Krzysztof
    FUEL, 2011, 90 (05) : 1946 - 1952
  • [49] Silica-supported Nb(iii)-CH3 species can act as an efficient catalyst for the non-oxidative coupling of methane
    Lin, Xufeng
    Ma, Lishuang
    Zhao, Shidong
    Xi, Yanyan
    Shang, Hongyan
    An, Gaojun
    Lu, Changbo
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (27) : 12260 - 12270
  • [50] A study on the reaction mechanism of non-oxidative methane coupling in a nanosecond pulsed discharge reactor using isotope analysis
    Scapinello, Marco
    Delikonstantis, Evangelos
    Stefanidis, Georgios D.
    CHEMICAL ENGINEERING JOURNAL, 2019, 360 : 64 - 74