Photocatalytic non-oxidative coupling of methane: Recent progress and future

被引:28
作者
Wu, Shiqun [1 ,2 ]
Wang, Lingzhi [1 ,2 ]
Zhang, Jinlong [1 ,2 ,3 ]
机构
[1] East China Univ Sci & Technol, Sch Chem & Mol Engn, Frontiers Sci Ctr Materiobiol & Dynam Chem, Feringa Nobel Prize Scientist Joint Res Ctr,Key L, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Sch Chem & Mol Engn, Frontiers Sci Ctr Materiobiol & Dynam Chem, Feringa Nobel Prize Scientist Joint Res Ctr,Joint, 130 Meilong Rd, Shanghai 200237, Peoples R China
[3] Yancheng Inst Technol, Sch Chem & Chem Engn, Yancheng 224051, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalysis; Non-oxidative coupling of methane; Methane activation; Noble metal; SILICA-ALUMINA; ACTIVE-SITES; PHOTOACTIVE SITES; CARBON-DIOXIDE; GALLIUM OXIDE; CONVERSION; FUELS; CHALLENGE; REDUCTION; ETHANE;
D O I
10.1016/j.jphotochemrev.2020.100400
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The importance of effectively converting methane to hydrogen and high value-added hydrocarbons chemicals is becoming more significant due to the huge resources of methane and increasing demands for chemicals. However, it is hard to convert methane into more useful hydrocarbons and hydrogen due to the enormous thermodynamic barrier, which often needs high energy and often results in catalyst deactivation and unsatisfactory product selectivity. Recently, a growing number of researches focusing on photocatalytic methane conversion under mild conditions have attracted much attention, demonstrating that photocatalytic non-oxidative coupling of methane (PNOCM) is a prospective and green method for methane conversion under mild conditions. Herein, we provide a review of the recent advance, remaining challenges, and prospects in PNOCM. Moreover, this review provides considerable guidance for rational design of efficient and stable photocatalysts towards PNOCM by theory predictions and experiment results. We hope this review can attract more attention to the important research field of energy conversion. (c) 2020 Elsevier B.V. All rights reserved. 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Importance of methane conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. Challenge in methane conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3. NOCM reaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2. Photocatalytic NOCM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. Non-noble-metal photocatalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1. Silica-based catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2. Metal oxide-based catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3. Zeolite-based catalysts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Application of defective TiO2 inverse opal in photocatalytic non-oxidative CH4 coupling
    Jiayu Ma
    Xiangxiang Zhang
    Qingqing Zhang
    Kai Kang
    Jinlong Zhang
    Lingzhi Wang
    Research on Chemical Intermediates, 2022, 48 : 3247 - 3258
  • [32] Application of defective TiO2 inverse opal in photocatalytic non-oxidative CH4 coupling
    Ma, Jiayu
    Zhang, Xiangxiang
    Zhang, Qingqing
    Kang, Kai
    Zhang, Jinlong
    Wang, Lingzhi
    RESEARCH ON CHEMICAL INTERMEDIATES, 2022, 48 (08) : 3247 - 3258
  • [33] Photoinduced non-oxidative coupling of methane over H-zeolites around room temperature
    Kato, Y
    Yoshida, H
    Satsuma, A
    Hattori, T
    MICROPOROUS AND MESOPOROUS MATERIALS, 2002, 51 (03) : 223 - 231
  • [34] Non-oxidative coupling reaction of methane to hydrogen and ethene via plasma-catalysis process
    Zhou, Mingchuan
    Yang, Zhe
    Ren, Junpeng
    Zhang, Tie
    Xu, Wei
    Zhang, Jing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (01) : 78 - 89
  • [35] Mechanistic and microkinetic study of non-oxidative methane coupling on a single-atom iron catalyst
    Kim, Seok Ki
    Kim, Hyun Woo
    Han, Seung Ju
    Lee, Sung Woo
    Shin, Jungho
    Kim, Yong Tae
    COMMUNICATIONS CHEMISTRY, 2020, 3 (01)
  • [36] Selective Photocatalytic Oxidative Coupling of Methane via Regulating Methyl Intermediates over Metal/ZnO Nanoparticles
    Wang, Pu
    Shi, Run
    Zhao, Yunxuan
    Li, Zhenhua
    Zhao, Jiaqing
    Zhao, Jiaqi
    Waterhouse, Geoffrey I. N.
    Wu, Li-Zhu
    Zhang, Tierui
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (23)
  • [37] Hybrid plasma catalysis-thermal system for non-oxidative coupling of methane to ethylene and hydrogen
    Liu, Rui
    Morais, Eduardo
    Li, Dongxing
    Liu, Pengfei
    Chen, Qian
    Li, Shangkun
    Wang, Li
    Gao, Xiaoxia
    Bogaerts, Annemie
    Guo, Hongchen
    Yi, Yanhui
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [38] High-density frustrated Lewis pairs based on Lamellar Nb2O5 for photocatalytic non-oxidative methane coupling
    Chen, Ziyu
    Ye, Yutao
    Feng, Xiaoyi
    Wang, Yan
    Han, Xiaowei
    Zhu, Yu
    Wu, Shiqun
    Wang, Senyao
    Yang, Wenda
    Wang, Lingzhi
    Zhang, Jinlong
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [39] Synergy of Ag and AgBr in a Pressurized Flow Reactor for Selective Photocatalytic Oxidative Coupling of Methane
    Wang, Chao
    Li, Xiyi
    Ren, Yifei
    Jiao, Haimiao
    Wang, Feng Ryan
    Tang, Junwang
    ACS CATALYSIS, 2023, 13 (06) : 3768 - 3774
  • [40] Plasma assisted non-oxidative methane coupling over Ni-Fe mixed metal oxides
    De Felice, Giulia
    Li, Sirui
    Anello, Gaetano
    Petit, Chantal
    Gallucci, Fausto
    Rebrov, Evgeny
    CATALYSIS TODAY, 2024, 440