Photocatalytic non-oxidative coupling of methane: Recent progress and future

被引:28
作者
Wu, Shiqun [1 ,2 ]
Wang, Lingzhi [1 ,2 ]
Zhang, Jinlong [1 ,2 ,3 ]
机构
[1] East China Univ Sci & Technol, Sch Chem & Mol Engn, Frontiers Sci Ctr Materiobiol & Dynam Chem, Feringa Nobel Prize Scientist Joint Res Ctr,Key L, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Sch Chem & Mol Engn, Frontiers Sci Ctr Materiobiol & Dynam Chem, Feringa Nobel Prize Scientist Joint Res Ctr,Joint, 130 Meilong Rd, Shanghai 200237, Peoples R China
[3] Yancheng Inst Technol, Sch Chem & Chem Engn, Yancheng 224051, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalysis; Non-oxidative coupling of methane; Methane activation; Noble metal; SILICA-ALUMINA; ACTIVE-SITES; PHOTOACTIVE SITES; CARBON-DIOXIDE; GALLIUM OXIDE; CONVERSION; FUELS; CHALLENGE; REDUCTION; ETHANE;
D O I
10.1016/j.jphotochemrev.2020.100400
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The importance of effectively converting methane to hydrogen and high value-added hydrocarbons chemicals is becoming more significant due to the huge resources of methane and increasing demands for chemicals. However, it is hard to convert methane into more useful hydrocarbons and hydrogen due to the enormous thermodynamic barrier, which often needs high energy and often results in catalyst deactivation and unsatisfactory product selectivity. Recently, a growing number of researches focusing on photocatalytic methane conversion under mild conditions have attracted much attention, demonstrating that photocatalytic non-oxidative coupling of methane (PNOCM) is a prospective and green method for methane conversion under mild conditions. Herein, we provide a review of the recent advance, remaining challenges, and prospects in PNOCM. Moreover, this review provides considerable guidance for rational design of efficient and stable photocatalysts towards PNOCM by theory predictions and experiment results. We hope this review can attract more attention to the important research field of energy conversion. (c) 2020 Elsevier B.V. All rights reserved. 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Importance of methane conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2. Challenge in methane conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3. NOCM reaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2. Photocatalytic NOCM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. Non-noble-metal photocatalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1. Silica-based catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2. Metal oxide-based catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3. Zeolite-based catalysts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Non-Oxidative Coupling of Methane: Interplay of Catalyst Interface and Gas Phase Mechanisms
    Zhang, Seraphine B. X. Y.
    Coperet, Christophe
    CHIMIA, 2023, 77 (04) : 206 - 211
  • [22] Catalytic Non-Oxidative Coupling of Methane on Ta8O2+
    Levin, Nikita
    Lengyel, Jozef
    Eckhard, Jan F.
    Tschurl, Martin
    Heiz, Ueli
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (12) : 5862 - 5869
  • [23] Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: A review
    Gambo, Y.
    Jalil, A. A.
    Triwahyono, S.
    Abdulrasheed, A. A.
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2018, 59 : 218 - 229
  • [24] Influence of Axial Temperature Profiles on Fe/SiO2 Catalyzed Non-oxidative Coupling of Methane
    Postma, Rolf S.
    Lefferts, Leon
    CHEMCATCHEM, 2021, 13 (04) : 1157 - 1160
  • [25] In Situ Formation of Ru-Sn Bimetallic Particles for Non-Oxidative Coupling of Methane
    Motokura, Ken
    Mizuno, Ayaka
    Hasegawa, Shingo
    Nambo, Masayuki
    Takabatake, Moe
    Suzuki, Kenta
    Manaka, Yuichi
    Uemura, Yohei
    Tsubaki, Shuntaro
    Chun, Wang-Jae
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (31) : 15185 - 15194
  • [26] Non-oxidative methane coupling to C2 hydrocarbons in a microwave plasma reactor
    Minea, Teofil
    van den Bekerom, Dirk C. M.
    Peeters, Floran J. J.
    Zoethout, Erwin
    Graswinckel, Martijn F.
    van de Sanden, Mauritius C. M.
    Cents, Toine
    Lefferts, Leon
    van Rooij, Gerard J.
    PLASMA PROCESSES AND POLYMERS, 2018, 15 (11)
  • [27] Photo-Driven Iron-Induced Non-Oxidative Coupling of Methane to Ethane
    Zhang, Huizhen
    Zhong, Wanfu
    Gong, Qiaobin
    Sun, Pengfei
    Fei, Xiaozhen
    Wu, Xuejiao
    Xu, Sha
    Zhang, Qinghong
    Fu, Gang
    Xie, Shunji
    Wang, Ye
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (25)
  • [28] Non-oxidative Coupling of Methane to Ethylene Using Mo2C/[B]ZSM-5
    Sheng, Huibo
    Schreiner, Edward P.
    Zheng, Weiqing
    Lobo, Raul F.
    CHEMPHYSCHEM, 2018, 19 (04) : 504 - 511
  • [29] Photocatalytic ammonia synthesis: Recent progress and future
    Zhang, Shuai
    Zhao, Yunxuan
    Shi, Run
    Waterhouse, Geoffrey I. N.
    Zhang, Tierui
    ENERGYCHEM, 2019, 1 (02)
  • [30] Non-Oxidative Coupling of Methane Driven by Non-Thermal Plasma: Effect of Packing Materials on Micro-Electric Field
    Liu, Rui
    Hao, Yingzi
    Meng, Shengyan
    Guo, Hongchen
    Yi, Yanhui
    CHEMISTRYSELECT, 2023, 8 (06):